This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abu Laban N, Selesi D, Jobelius C, Meckenstock RU. Anaerobic benzene degradation by Gram-positive sulfate-reducing bacteria. FEMS Microbiol Ecol. 2009 Jun;68(3):300–311. https://doi.org/10.1111/j.1574-6941.2009.00672.xAbu LabanNSelesiDJobeliusCMeckenstockRU.Anaerobic benzene degradation by Gram-positive sulfate-reducing bacteria. FEMS Microbiol Ecol. 2009Jun;68(3):300–311. https://doi.org/10.1111/j.1574-6941.2009.00672.xSearch in Google Scholar
Aktaş N, Şahiner N, Kantoğlu Ö, Salih B, Tanyolaç A. Biosynthesis and characterization of laccase catalyzed poly(catechol). J Polym Environ. 2003 Jul;11:123–128. https://doi.org/10.1023/A:1024639231900AktaşNŞahinerNKantoğluÖSalihBTanyolaçA.Biosynthesis and characterization of laccase catalyzed poly(catechol). J Polym Environ. 2003Jul;11:123–128. https://doi.org/10.1023/A:1024639231900Search in Google Scholar
Alviz-Gazitua P, Durán RE, Millacura FA, Cárdenas F, Rojas LA, Seeger M. Cupriavidus metallidurans CH34 possesses aromatic catabolic versatility and degrades benzene in the presence of mercury and cadmium. Microorganisms. 2022 Feb;10(2):484. https://doi.org/10.3390/microorganisms10020484Alviz-GazituaPDuránREMillacuraFACárdenasFRojasLASeegerM.Cupriavidus metallidurans CH34 possesses aromatic catabolic versatility and degrades benzene in the presence of mercury and cadmium. Microorganisms. 2022Feb;10(2):484. https://doi.org/10.3390/microorganisms10020484Search in Google Scholar
Anantharaj S, Nithiyanantham U, Ede SR, Ayyappan E, Kundu S. π-stacking intercalation and reductant assisted stabilization of osmium organosol for catalysis and SERS applications. RSC Adv. 2015;5(16):11850–11860. https://doi.org/10.1039/c4ra15521aAnantharajSNithiyananthamUEdeSRAyyappanEKunduS.π-stacking intercalation and reductant assisted stabilization of osmium organosol for catalysis and SERS applications. RSC Adv. 2015;5(16):11850–11860. https://doi.org/10.1039/c4ra15521aSearch in Google Scholar
Atashgahi S, Hornung B, van der Waals MJ, da Rocha UN, Hugenholtz F, Nijsse B, Molenaar D, van Spanning R, Stams AJM, Gerritse J, et al. A benzene-degrading nitrate-reducing microbial consortium displays aerobic and anaerobic benzene degradation pathways. Sci Rep. 2018 Mar;8(1):4490. https://doi.org/10.1038/s41598-018-22617-xAtashgahiSHornungBvan der WaalsMJda RochaUNHugenholtzFNijsseBMolenaarDvan SpanningRStamsAJMGerritseJA benzene-degrading nitrate-reducing microbial consortium displays aerobic and anaerobic benzene degradation pathways. Sci Rep. 2018Mar;8(1):4490. https://doi.org/10.1038/s41598-018-22617-xSearch in Google Scholar
Baek K, Bae SS, Jung J, Chung D. Complete genome sequence of Marinobacterium aestuarii ST58-10T, a benzene-degrading bacterium isolated from estuarine sediment. Microbiol Resour Announc. 2018 Sep;7(11):e00971-18. https://doi.org/10.1128/mra.00971-18BaekKBaeSSJungJChungD.Complete genome sequence of Marinobacterium aestuarii ST58-10T, a benzene-degrading bacterium isolated from estuarine sediment. Microbiol Resour Announc. 2018Sep;7(11):e00971–18. https://doi.org/10.1128/mra.00971-18Search in Google Scholar
Bedics A, Táncsics A, Tóth E, Banerjee S, Harkai P, Kovács B, Bóka K, Kriszt B. Microaerobic enrichment of benzene-degrading bacteria and description of Ideonella benzenivorans sp. nov., capable of degrading benzene, toluene and ethylbenzene under microaerobic conditions. Antonie Van Leeuwenhoek. 2022 Sep;115(9):1113–1128. https://doi.org/10.1007/s10482-022-01759-zBedicsATáncsicsATóthEBanerjeeSHarkaiPKovácsBBókaKKrisztB.Microaerobic enrichment of benzene-degrading bacteria and description of Ideonella benzenivorans sp. nov., capable of degrading benzene, toluene and ethylbenzene under microaerobic conditions. Antonie Van Leeuwenhoek. 2022Sep;115(9):1113–1128. https://doi.org/10.1007/s10482-022-01759-zSearch in Google Scholar
Breisch J, Huber LS, Kraiczy P, Hubloher J, Averhoff B. The β-ketoadipate pathway of Acinetobacter baumannii is involved in complement resistance and affects resistance against aromatic antibiotics. Environ Microbiol Rep. 2022 Feb;14(1):170–178. https://doi.org/10.1111/1758-2229.13042BreischJHuberLSKraiczyPHubloherJAverhoffB.The β-ketoadipate pathway of Acinetobacter baumannii is involved in complement resistance and affects resistance against aromatic antibiotics. Environ Microbiol Rep. 2022Feb;14(1):170–178. https://doi.org/10.1111/1758-2229.13042Search in Google Scholar
Chakraborty R, Coates JD. Hydroxylation and carboxylation – two crucial steps of anaerobic benzene degradation by Dechloromonas strain RCB. Appl Environ Microbiol. 2005 Sep;71(9):5427–5432. https://doi.org/10.1128/aem.71.9.5427-5432.2005ChakrabortyRCoatesJD.Hydroxylation and carboxylation – two crucial steps of anaerobic benzene degradation by Dechloromonas strain RCB. Appl Environ Microbiol. 2005Sep;71(9):5427–5432. https://doi.org/10.1128/aem.71.9.5427-5432.2005Search in Google Scholar
Chen X, Molenda O, Brown CT, Toth CRA, Guo S, Luo F, Howe J, Nesbø CL, He C, Montabana EA, et al. “Candidatus Nealsonbacteria” are likely biomass recycling ectosymbionts of methanogenic archaea in a stable benzene-degrading enrichment culture. Appl Environ Microbiol. 2023 May;89(5):e0002523. https://doi.org/10.1128/aem.00025-23ChenXMolendaOBrownCTTothCRAGuoSLuoFHoweJNesbøCLHeCMontabanaEA“Candidatus Nealsonbacteria” are likely biomass recycling ectosymbionts of methanogenic archaea in a stable benzene-degrading enrichment culture. Appl Environ Microbiol. 2023May;89(5):e0002523. https://doi.org/10.1128/aem.00025-23Search in Google Scholar
Chen Y, Ye W, Zhang Y, Xu Y. High speed BLASTN: An accelerated MegaBLAST search tool. Nucleic Acids Res. 2015 Sep;43(16): 7762–7768. https://doi.org/10.1093/nar/gkv784ChenYYeWZhangYXuY.High speed BLASTN: An accelerated MegaBLAST search tool. Nucleic Acids Res. 2015Sep;43(16): 7762–7768. https://doi.org/10.1093/nar/gkv784Search in Google Scholar
Dairawan M, Shetty PJ. The evolution of DNA extraction methods. Am J Biomed Sci Res. 2020;8(1):39–45. https://doi.org/10.34297/ajbsr.2020.08.001234DairawanMShettyPJ.The evolution of DNA extraction methods. Am J Biomed Sci Res. 2020;8(1):39–45. https://doi.org/10.34297/ajbsr.2020.08.001234Search in Google Scholar
Domańska M, Hamal K, Jasionowski B, Łomotowski J. Bacteriological contamination detection in water and wastewater samples using OD600. Polish J Environ Stud. 2019;28(6):4503–4509. https://doi.org/10.15244/pjoes/94838DomańskaMHamalKJasionowskiBŁomotowskiJ.Bacteriological contamination detection in water and wastewater samples using OD600. Polish J Environ Stud. 2019;28(6):4503–4509. https://doi.org/10.15244/pjoes/94838Search in Google Scholar
Dong X, Dröge J, von Toerne C, Marozava S, McHardy AC, Meckenstock RU. Reconstructing metabolic pathways of a member of the genus Pelotomaculum suggesting its potential to oxidize benzene to carbon dioxide with direct reduction of sulfate. FEMS Microbiol Ecol. 2017 Mar;93(3):fiw254. https://doi.org/10.1093/femsec/fiw254DongXDrögeJvon ToerneCMarozavaSMcHardyACMeckenstockRU.Reconstructing metabolic pathways of a member of the genus Pelotomaculum suggesting its potential to oxidize benzene to carbon dioxide with direct reduction of sulfate. FEMS Microbiol Ecol. 2017Mar;93(3):fiw254. https://doi.org/10.1093/femsec/fiw254Search in Google Scholar
Dou J, Ding A, Liu X, Du Y, Deng D, Wang J. Anaerobic benzene biodegradation by a pure bacterial culture of Bacillus cereus under nitrate reducing conditions. J Environ Sci. 2010;22(5):709–715. https://doi.org/10.1016/s1001-0742(09)60167-4DouJDingALiuXDuYDengDWangJ.Anaerobic benzene biodegradation by a pure bacterial culture of Bacillus cereus under nitrate reducing conditions. J Environ Sci. 2010;22(5):709–715. https://doi.org/10.1016/s1001-0742(09)60167-4Search in Google Scholar
Fahy A, Ball AS, Lethbridge G, Timmis KN, McGenity TJ. Isolation of alkali-tolerant benzene-degrading bacteria from a contaminated aquifer. Lett Appl Microbiol. 2008 Jul;47(1):60–66. https://doi.org/10.1111/j.1472-765X.2008.02386.xFahyABallASLethbridgeGTimmisKNMcGenityTJ.Isolation of alkali-tolerant benzene-degrading bacteria from a contaminated aquifer. Lett Appl Microbiol. 2008Jul;47(1):60–66. https://doi.org/10.1111/j.1472-765X.2008.02386.xSearch in Google Scholar
Fong KP, Goh CB, Tan HM. The genes for benzene catabolism in Pseudomonas putida ML2 are flanked by two copies of the insertion element IS1489, forming a class-I-type catabolic transposon, Tn5542. Plasmid. 2000 Mar;43(2):103–110. https://doi.org/10.1006/plas.1999.1442FongKPGohCBTanHM.The genes for benzene catabolism in Pseudomonas putida ML2 are flanked by two copies of the insertion element IS1489, forming a class-I-type catabolic transposon, Tn5542. Plasmid. 2000Mar;43(2):103–110. https://doi.org/10.1006/plas.1999.1442Search in Google Scholar
Hira A, Pacini H, Attafuah-Wadee K, Sikander M, Oruko R, Dinan A. Mitigating tannery pollution in sub-Saharan Africa and south Asia. J Dev Soc. 2022;38(3):360–383. https://doi.org/10.1177/0169796X221104856HiraAPaciniHAttafuah-WadeeKSikanderMOrukoRDinanA.Mitigating tannery pollution in sub-Saharan Africa and south Asia. J Dev Soc. 2022;38(3):360–383. https://doi.org/10.1177/0169796X221104856Search in Google Scholar
Högberg J, Järnberg J. Approaches for the setting of occupational exposure limits (OELs) for carcinogens. Crit Rev Toxicol. 2023 Dec; 53(3):131–167. https://doi.org/10.1080/10408444.2023.2218887HögbergJJärnbergJ.Approaches for the setting of occupational exposure limits (OELs) for carcinogens. Crit Rev Toxicol. 2023Dec; 53(3):131–167. https://doi.org/10.1080/10408444.2023.2218887Search in Google Scholar
Holmes DE, Risso C, Smith JA, Lovley DR. Anaerobic oxidation of benzene by the hyperthermophilic archaeon Ferroglobus placidus. Appl Environ Microbiol. 2011 Sep;77(17):5926–5933. https://doi.org/10.1128/aem.05452-11HolmesDERissoCSmithJALovleyDR.Anaerobic oxidation of benzene by the hyperthermophilic archaeon Ferroglobus placidus. Appl Environ Microbiol. 2011Sep;77(17):5926–5933. https://doi.org/10.1128/aem.05452-11Search in Google Scholar
Irshaid FI, Jacob JH, Al-Suhail Q. Benzene biodegradation by novel strain of Caldibacillus: isolation, characterization and bioremediation potential. Int J Agri Biol. 2024;31(3):227–234.IrshaidFIJacobJHAl-SuhailQ.Benzene biodegradation by novel strain of Caldibacillus: isolation, characterization and bioremediation potential. Int J Agri Biol. 2024;31(3):227–234.Search in Google Scholar
Irshaid FI, Jacob JH. Isolation and molecular identification of new benzene degrading Lysinibacillus strains from gasoline contaminated soil. Res J Environ Earth Sci. 2016;8(4):34–43. https://doi.org/10.19026/rjees.8.3064IrshaidFIJacobJH.Isolation and molecular identification of new benzene degrading Lysinibacillus strains from gasoline contaminated soil. Res J Environ Earth Sci. 2016;8(4):34–43. https://doi.org/10.19026/rjees.8.3064Search in Google Scholar
Işinkaralar K, Erdem R. The effect of atmospheric deposition on potassium accumulation in several tree species as a biomonitor. Environ Res Technol. 2022;5(1):94–100. https://doi.org/10.35208/ert.1026602IşinkaralarKErdemR.The effect of atmospheric deposition on potassium accumulation in several tree species as a biomonitor. Environ Res Technol. 2022;5(1):94–100. https://doi.org/10.35208/ert.1026602Search in Google Scholar
Jothimani P, Kalaichelvan G, Bhaskaran A, Selvaseelan DA, Ramasamy K. Anaerobic biodegradation of aromatic compounds. Indian J Exp Biol. 2003 Sep;41(9):1046–1067.JothimaniPKalaichelvanGBhaskaranASelvaseelanDARamasamyK.Anaerobic biodegradation of aromatic compounds. Indian J Exp Biol. 2003Sep;41(9):1046–1067.Search in Google Scholar
Kaur I, Dhiman PK. Synthesis, characterization of cellulose grafted N-oxide reagent and its application in oxidation of alkyl/aryl halides. Int J Org Chem. 2011;1(1):6–14. https://doi.org/10.4236/ijoc.2011.11002KaurIDhimanPK.Synthesis, characterization of cellulose grafted N-oxide reagent and its application in oxidation of alkyl/aryl halides. Int J Org Chem. 2011;1(1):6–14. https://doi.org/10.4236/ijoc.2011.11002Search in Google Scholar
Krishna Y, Saidur R, Aslfattahi N, Faizal M, Ng KC. Enhancing the thermal properties of organic phase change material (palmitic acid) by doping MXene nanoflakes. AIP Conf. Proc. 2020 May; 2233(1):020013. https://doi.org/10.1063/5.0001366KrishnaYSaidurRAslfattahiNFaizalMNgKC.Enhancing the thermal properties of organic phase change material (palmitic acid) by doping MXene nanoflakes. AIP Conf. Proc. 2020May; 2233(1):020013. https://doi.org/10.1063/5.0001366Search in Google Scholar
Ladino-Orjuela G, Gomes E, da Silva R, Salt C, Parsons JR. Metabolic pathways for degradation of aromatic hydrocarbons by bacteria. In: de Voogt W, editor. Reviews of Environmental Contamination and Toxicology, vol. 237. Cham (Switzerland): Springer; 2016. p. 105–121. https://doi.org/10.1007/978-3-319-23573-8_5Ladino-OrjuelaGGomesEda SilvaRSaltCParsonsJR.Metabolic pathways for degradation of aromatic hydrocarbons by bacteria. In: de VoogtW, editor. Reviews of Environmental Contamination and Toxicology, vol. 237. Cham (Switzerland): Springer; 2016. p. 105–121. https://doi.org/10.1007/978-3-319-23573-8_5Search in Google Scholar
Lam SS, Liew RK, Cheng CK, Chase HA. Catalytic microwave pyrolysis of waste engine oil using metallic pyrolysis char. Appl Catal B Environ. 2015;176–177:601–617. https://doi.org/10.1016/j.apcatb.2015.04.014LamSSLiewRKChengCKChaseHA.Catalytic microwave pyrolysis of waste engine oil using metallic pyrolysis char. Appl Catal B Environ. 2015;176–177:601–617. https://doi.org/10.1016/j.apcatb.2015.04.014Search in Google Scholar
Lawrence W, Black C, Tinati T, Cradock S, Begum R, Jarman M, Pease A, Margetts B, Davies J, Inskip H, et al. ‘Making every contact count’: Evaluation of the impact of an intervention to train health and social care practitioners in skills to support health behaviour change. J Health Psychol. 2016 Feb;21(2):138–151. https://doi.org/10.1177/1359105314523304LawrenceWBlackCTinatiTCradockSBegumRJarmanMPeaseAMargettsBDaviesJInskipH‘Making every contact count’: Evaluation of the impact of an intervention to train health and social care practitioners in skills to support health behaviour change. J Health Psychol. 2016Feb;21(2):138–151. https://doi.org/10.1177/1359105314523304Search in Google Scholar
Lazaroaie MM. Adaptative response of Shewanella putrefaciens and Pseudomonas aeruginosa to toxic organic solvents. Biotechnol Biotechnol Equip. 2010;24(1):1592–1599. https://doi.org/10.2478/v10133-010-0011-9LazaroaieMM.Adaptative response of Shewanella putrefaciens and Pseudomonas aeruginosa to toxic organic solvents. Biotechnol Biotechnol Equip. 2010;24(1):1592–1599. https://doi.org/10.2478/v10133-010-0011-9Search in Google Scholar
Lăzăroaie MM. Multiple responses of Gram-positive and Gramnegative bacteria to mixture of hydrocarbons. Braz J Microbiol. 2010;41(3):649–667. https://doi.org/10.1590/S1517-83822010000300016LăzăroaieMM.Multiple responses of Gram-positive and Gramnegative bacteria to mixture of hydrocarbons. Braz J Microbiol. 2010;41(3):649–667. https://doi.org/10.1590/S1517-83822010000300016Search in Google Scholar
Luo F, Gitiafroz R, Devine CE, Gong Y, Hug LA, Raskin L, Edwards EA. Metatranscriptome of an anaerobic benzene-degrading, nitrate-reducing enrichment culture reveals involvement of carboxylation in benzene ring activation. Appl Environ Microbiol. 2014 Jul;80(14):4095–4107. https://doi.org/10.1128/aem.00717-14LuoFGitiafrozRDevineCEGongYHugLARaskinLEdwardsEA.Metatranscriptome of an anaerobic benzene-degrading, nitrate-reducing enrichment culture reveals involvement of carboxylation in benzene ring activation. Appl Environ Microbiol. 2014Jul;80(14):4095–4107. https://doi.org/10.1128/aem.00717-14Search in Google Scholar
Meckenstock RU, Boll M, Mouttaki H, Koelschbach JS, Cunha Tarouco P, Weyrauch P, Dong X, Himmelberg AM. Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol. 2016;26(1–3):92–118. https://doi.org/10.1159/000441358MeckenstockRUBollMMouttakiHKoelschbachJSCunha TaroucoPWeyrauchPDongXHimmelbergAM.Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol. 2016;26(1–3):92–118. https://doi.org/10.1159/000441358Search in Google Scholar
Mohammadpour H, Shahriarinour M, Yousefi R. Benzene degradation by free and immobilized Bacillus glycinifermantans strain GO-13T using go sheets. Pol. J. Environ. Stud. 2020;29(4):2783–2793. https://doi.org/10.15244/pjoes/111512MohammadpourHShahriarinourMYousefiR.Benzene degradation by free and immobilized Bacillus glycinifermantans strain GO-13T using go sheets. Pol. J. Environ. Stud. 2020;29(4):2783–2793. https://doi.org/10.15244/pjoes/111512Search in Google Scholar
Muccee F, Ejaz S, Riaz N. Toluene degradation via a unique metabolic route in indigenous bacterial species. Arch Microbiol. 2019 Dec;201(10):1369–1383. https://doi.org/10.1007/s00203-019-01705-0MucceeFEjazSRiazN.Toluene degradation via a unique metabolic route in indigenous bacterial species. Arch Microbiol. 2019Dec;201(10):1369–1383. https://doi.org/10.1007/s00203-019-01705-0Search in Google Scholar
Muccee F, Ejaz S. Whole genome shotgun sequencing of POPs degrading bacterial community dwelling tannery effluents and petrol contaminated soil. Microbiol Res. 2020 Sep;238:126504. https://doi.org/10.1016/j.micres.2020.126504MucceeFEjazS.Whole genome shotgun sequencing of POPs degrading bacterial community dwelling tannery effluents and petrol contaminated soil. Microbiol Res. 2020Sep;238:126504. https://doi.org/10.1016/j.micres.2020.126504Search in Google Scholar
Mukherjee S, De A, Sarkar NK, Saha NC. Aerobic degradation of benzene by Escherichia spp. from petroleum-contaminated sites in Kolkata, West Bengal, India. J Pure Appl Microbiol. 2019:13(4): 2353–2362 https://doi.org/10.22207/jpam.13.4.51MukherjeeSDeASarkarNKSahaNC.Aerobic degradation of benzene by Escherichia spp. from petroleum-contaminated sites in Kolkata, West Bengal, India. J Pure Appl Microbiol. 2019:13(4): 2353–2362https://doi.org/10.22207/jpam.13.4.51Search in Google Scholar
Muter O. Current trends in bioaugmentation tools for bioremediation: A critical review of advances and knowledge gaps. Microorganisms. 2023 Mar;11(3):710. https://doi.org/10.3390/microorganisms11030710MuterO.Current trends in bioaugmentation tools for bioremediation: A critical review of advances and knowledge gaps. Microorganisms. 2023Mar;11(3):710. https://doi.org/10.3390/microorganisms11030710Search in Google Scholar
Na KS, Kuroda A, Takiguchi N, Ikeda T, Ohtake H, Kato J. Isolation and characterization of benzene-tolerant Rhodococcus opacus strains. J Biosci Bioeng. 2005 Apr;99(4):378–382. https://doi.org/10.1263/jbb.99.378NaKSKurodaATakiguchiNIkedaTOhtakeHKatoJ.Isolation and characterization of benzene-tolerant Rhodococcus opacus strains. J Biosci Bioeng. 2005Apr;99(4):378–382. https://doi.org/10.1263/jbb.99.378Search in Google Scholar
Nicholson CA, Fathepure BZ. Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Appl Environ Microbiol. 2004 Feb;70(2):1222–1225. https://doi.org/10.1128/aem.70.2.1222-1225.2004NicholsonCAFathepureBZ.Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Appl Environ Microbiol. 2004Feb;70(2):1222–1225. https://doi.org/10.1128/aem.70.2.1222-1225.2004Search in Google Scholar
Posman KM, DeRito CM, Madsen EL. Benzene degradation by a Variovorax species within a coal tar-contaminated groundwater microbial community. Appl Environ Microbiol. 2017 Feb;83(4): e02658-16. https://doi.org/10.1128/aem.02658-16PosmanKMDeRitoCMMadsenEL.Benzene degradation by a Variovorax species within a coal tar-contaminated groundwater microbial community. Appl Environ Microbiol. 2017Feb;83(4): e02658–16. https://doi.org/10.1128/aem.02658-16Search in Google Scholar
Rana I, Dahlberg S, Steinmaus C, Zhang L. Benzene exposure and non-Hodgkin lymphoma: A systematic review and meta-analysis of human studies. Lancet Planet Health. 2021 Sep;5(9):e633–e643. https://doi.org/10.1016/S2542-5196(21)00149-2RanaIDahlbergSSteinmausCZhangL.Benzene exposure and non-Hodgkin lymphoma: A systematic review and meta-analysis of human studies. Lancet Planet Health. 2021Sep;5(9):e633–e643. https://doi.org/10.1016/S2542-5196(21)00149-2Search in Google Scholar
Rastogi SK, Pandey A, Tripathi S. Occupational health risks among the workers employed in leather tanneries at Kanpur. Indian J Occup Environ Med. 2008 Dec;12(3):132–135. https://doi.org/10.4103/0019-5278.44695RastogiSKPandeyATripathiS.Occupational health risks among the workers employed in leather tanneries at Kanpur. Indian J Occup Environ Med. 2008Dec;12(3):132–135. https://doi.org/10.4103/0019-5278.44695Search in Google Scholar
Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, Leipe D, Mcveigh R, O’Neill K, Robbertse B, et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database. 2020 Jan;2020:baaa062. https://doi.org/10.1093/database/baaa062SchochCLCiufoSDomrachevMHottonCLKannanSKhovanskayaRLeipeDMcveighRO’NeillKRobbertseBNCBI Taxonomy: A comprehensive update on curation, resources and tools. Database. 2020Jan;2020:baaa062. https://doi.org/10.1093/database/baaa062Search in Google Scholar
Shala NK, Stenehjem JS, Babigumira R, Liu FC, Berge LAM, Silverman DT, Friesen MC, Rothman N, Lan Q, Hosgood HD, et al. Exposure to benzene and other hydrocarbons and risk of bladder cancer among male offshore petroleum workers. Br J Cancer. 2023 Sep;129(5):838–851. https://doi.org/10.1038/s41416-023-02357-0ShalaNKStenehjemJSBabigumiraRLiuFCBergeLAMSilvermanDTFriesenMCRothmanNLanQHosgoodHDExposure to benzene and other hydrocarbons and risk of bladder cancer among male offshore petroleum workers. Br J Cancer. 2023Sep;129(5):838–851. https://doi.org/10.1038/s41416-023-02357-0Search in Google Scholar
Sievers F, Higgins DG. The Clustal Omega Multiple Alignment Package. In: Katoh K, editor. Multiple sequence alignment. Methods in molecular biology, vol 2231. New York (USA): Humana; 2021. p. 3–16. https://doi.org/10.1007/978-1-0716-1036-7_1SieversFHigginsDG.The Clustal Omega Multiple Alignment Package. In: KatohK, editor. Multiple sequence alignment. Methods in molecular biology, vol 2231. New York (USA): Humana; 2021. p. 3–16. https://doi.org/10.1007/978-1-0716-1036-7_1Search in Google Scholar
Smith BC. Alcohols – the rest of the story. Spectrosc. 2017;32(4): 19–23.SmithBC.Alcohols – the rest of the story. Spectrosc. 2017;32(4): 19–23.Search in Google Scholar
Smith BC. The C=O bond, part III: Carboxylic acids. Spectrosc. 2018a;33(1):14-20.SmithBC.The C=O bond, part III: Carboxylic acids. Spectrosc. 2018a;33(1):14–20.Search in Google Scholar
Smith BC. The carbonyl group, part V: Carboxylates – coming clean. Spectrosc. 2018b;33(5):20–23.SmithBC.The carbonyl group, part V: Carboxylates – coming clean. Spectrosc. 2018b;33(5):20–23.Search in Google Scholar
Srivastava A, Valsala R, Jagadevan S. Biogeochemical modelling to assess benzene removal by biostimulation in aquifers containing natural reductants. Environ Sci Pollut Res Int. 2023 Aug;30(37): 88022–88035. https://doi.org/10.1007/s11356-023-28506-9SrivastavaAValsalaRJagadevanS.Biogeochemical modelling to assess benzene removal by biostimulation in aquifers containing natural reductants. Environ Sci Pollut Res Int. 2023Aug;30(37): 88022–88035. https://doi.org/10.1007/s11356-023-28506-9Search in Google Scholar
Sun Y, Yue G, Ma J. Transport and natural attenuation of benzene vapor from a point source in the vadose zone. Chemosphere. 2023 May;323:138222. https://doi.org/10.1016/j.chemosphere.2023.138222SunYYueGMaJ.Transport and natural attenuation of benzene vapor from a point source in the vadose zone. Chemosphere. 2023May;323:138222. https://doi.org/10.1016/j.chemosphere.2023.138222Search in Google Scholar
Syman K, Saleh ZM, Hasoon A, Dawood FA, Awfi ZS, Khaleel LA, Nazym B, Bakytbekovich ON, Masalov AE. Evaluation of air pollutants caused by benzene, toluene, and xylene at Kazakhstan Petrochemical Industries Inc. LLP in 2022. J Chem Health Risks. 2023;13(4):753–760. https://doi.org/10.22034/jchr.2023.1982545.1710SymanKSalehZMHasoonADawoodFAAwfiZSKhaleelLANazymBBakytbekovichONMasalovAE.Evaluation of air pollutants caused by benzene, toluene, and xylene at Kazakhstan Petrochemical Industries Inc. LLP in 2022. J Chem Health Risks. 2023;13(4):753–760. https://doi.org/10.22034/jchr.2023.1982545.1710Search in Google Scholar
Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol. 2021 Jun;38(7): 3022–3027. https://doi.org/10.1093/molbev/msab120TamuraKStecherGKumarS.MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol. 2021Jun;38(7): 3022–3027. https://doi.org/10.1093/molbev/msab120Search in Google Scholar
Tao Y, Fishman A, Bentley WE, Wood TK. Oxidation of benzene to phenol, catechol, and 1,2,3-trihydroxybenzene by toluene 4-monooxygenase of Pseudomonas mendocina KR1 and toluene 3-monooxygenase of Ralstonia pickettii PKO1. Appl Environ Microbiol. 2004 Jul;70(7):3814–3820. https://doi.org/10.1128/aem.70.7.3814-3820.2004TaoYFishmanABentleyWEWoodTK.Oxidation of benzene to phenol catechol, and 1,2,3-trihydroxybenzene by toluene 4-monooxygenase of Pseudomonas mendocina KR1 and toluene 3-monooxygenase of Ralstonia pickettii PKO1. Appl Environ Microbiol. 2004Jul;70(7):3814–3820. https://doi.org/10.1128/aem.70.7.3814-3820.2004Search in Google Scholar
Tayyeb SR, Kazemipour N, Hassanshahian M, Rokhbakhsh-Zamin F, Khoshroo SMR. Assessment of biostimulation and bioaugmentation on crude oil-polluted sediments microbial community of Persian Gulf: A microcosm simulation study. Geomicrobiol J. 2024; 41(1):98–108. https://doi.org/10.1080/01490451.2023.2285317TayyebSRKazemipourNHassanshahianMRokhbakhsh-ZaminFKhoshrooSMR.Assessment of biostimulation and bioaugmentation on crude oil-polluted sediments microbial community of Persian Gulf: A microcosm simulation study. Geomicrobiol J. 2024; 41(1):98–108. https://doi.org/10.1080/01490451.2023.2285317Search in Google Scholar
Varjani SJ, Gnansounou E, Pandey A. Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. Chemosphere. 2017 Dec;188:280–91. https://doi.org/10.1016/j.chemosphere.2017.09.005VarjaniSJGnansounouEPandeyA.Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. Chemosphere. 2017Dec;188:280–91. https://doi.org/10.1016/j.chemosphere.2017.09.005Search in Google Scholar
Varma SS, Lakshmi MB, Velan M. Isolation and characterization of non-adapted BTEX degrading bacterial strains from petroleum contaminated environment. J Pure Appl Microbiol. 2015; 9(4): 3161–3170.VarmaSSLakshmiMBVelanM.Isolation and characterization of non-adapted BTEX degrading bacterial strains from petroleum contaminated environment. J Pure Appl Microbiol. 2015; 9(4): 3161–3170.Search in Google Scholar
Wan W, Peters S, Portengen L, Olsson A, Schüz J, Ahrens W, Schejbalova M, Boffetta P, Behrens T, Brüning T, et al. Occupational benzene exposure and lung cancer risk: A pooled analysis of 14 case-control studies. Am J Respir Crit Care Med. 2024 Jan; 209(2):185–196. https://doi.org/10.1164/rccm.202306-0942ocWanWPetersSPortengenLOlssonASchüzJAhrensWSchejbalovaMBoffettaPBehrensTBrüningTOccupational benzene exposure and lung cancer risk: A pooled analysis of 14 case-control studies. Am J Respir Crit Care Med. 2024Jan; 209(2):185–196. https://doi.org/10.1164/rccm.202306-0942ocSearch in Google Scholar
Wang J, Ma Y, Tang L, Li D, Xie J, Sun Y, Tian Y. Long-term exposure to low concentrations of ambient benzene and mortality in a national English cohort. Am J Respir Crit Care Med. 2024a Apr; 209(8):987–994. https://doi.org/10.1164/rccm.202308-1440ocWangJMaYTangLLiDXieJSunYTianY.Long-term exposure to low concentrations of ambient benzene and mortality in a national English cohort. Am J Respir Crit Care Med. 2024aApr; 209(8):987–994. https://doi.org/10.1164/rccm.202308-1440ocSearch in Google Scholar
Wang T, Cao Y, Xia Z, Christiani DC, Au WW. Review on novel toxicological effects and personalized health hazard in workers exposed to low doses of benzene. Arch Toxicol. 2024b Feb;98(2): 365–374. https://doi.org/10.1007/s00204-023-03650-wWangTCaoYXiaZChristianiDCAuWW.Review on novel toxicological effects and personalized health hazard in workers exposed to low doses of benzene. Arch Toxicol. 2024bFeb;98(2): 365–374. https://doi.org/10.1007/s00204-023-03650-wSearch in Google Scholar
>Xie S, Sun W, Luo C, Cupples AM. Novel aerobic benzene degrading microorganisms identified in three soils by stable isotope probing. Biodegradation. 2011 Feb;22(1):71–81. https://doi.org/10.1007/s10532-010-9377-5XieSSunWLuoCCupplesAM.Novel aerobic benzene degrading microorganisms identified in three soils by stable isotope probing. Biodegradation. 2011Feb;22(1):71–81. https://doi.org/10.1007/s10532-010-9377-5Search in Google Scholar
Zehnle H, Otersen C, Benito Merino D, Wegener G. Potential for the anaerobic oxidation of benzene and naphthalene in thermophilic microorganisms from the Guaymas Basin. Front Microbiol. 2023 Sep;14:1279865. https://doi.org/10.3389/fmicb.2023.1279865ZehnleHOtersenCBenito MerinoDWegenerG.Potential for the anaerobic oxidation of benzene and naphthalene in thermophilic microorganisms from the Guaymas Basin. Front Microbiol. 2023Sep;14:1279865. https://doi.org/10.3389/fmicb.2023.1279865Search in Google Scholar
Zhang R, Ye Z, Guo X, Yang Y, Li G. Microbial diversity and metabolic pathways linked to benzene degradation in petrochemical – polluted groundwater. Environ Int. 2024 Jun;188:108755. https://doi.org/10.1016/j.envint.2024.108755ZhangRYeZGuoXYangYLiG.Microbial diversity and metabolic pathways linked to benzene degradation in petrochemical – polluted groundwater. Environ Int. 2024Jun;188:108755. https://doi.org/10.1016/j.envint.2024.108755Search in Google Scholar
Zhang T, Tremblay PL, Chaurasia AK, Smith JA, Bain TS, Lovley DR. Anaerobic benzene oxidation via phenol in Geobacter metallireducens. Appl Environ Microbiol. 2013 Dec;79(24):7800–7806. https://doi.org/10.1128/aem.03134-13ZhangTTremblayPLChaurasiaAKSmithJABainTSLovleyDR.Anaerobic benzene oxidation via phenol in Geobacter metallireducens. Appl Environ Microbiol. 2013Dec;79(24):7800–7806. https://doi.org/10.1128/aem.03134-13Search in Google Scholar
Zhang T, Tremblay PL, Chaurasia AK, Smith JA, Bain TS, Lovley DR. Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens. Front Microbiol. 2014 May;5:245. https://doi.org/10.3389/fmicb.2014.00245ZhangTTremblayPLChaurasiaAKSmithJABainTSLovleyDR.Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens. Front Microbiol. 2014May;5:245. https://doi.org/10.3389/fmicb.2014.00245Search in Google Scholar
Zhu T, Li J, Jin YQ, Liang YH, Ma GD. Gaseous phase benzene decomposition by non-thermal plasma coupled with nano titania catalyst. Int J Environ Sci Technol. 2009;6:141–148. https://doi.org/10.1007/bf03326068ZhuTLiJJinYQLiangYHMaGD.Gaseous phase benzene decomposition by non-thermal plasma coupled with nano titania catalyst. Int J Environ Sci Technol. 2009;6:141–148. https://doi.org/10.1007/bf03326068Search in Google Scholar