This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Almeida LM, Lebreton F, Gaca A, Bispo PM, Saavedra JT, Calumby RN, Grillo LM, Nascimento TG, Filsner PH, Moreno AM, et al. Transferable resistance gene optrA in Enterococcus faecalis from Swine in Brazil. Antimicrob Agents Chemother. 2020 May; 64(6):e00142-20. https://doi.org/10.1128/aac.00142-20AlmeidaLMLebretonFGacaABispoPMSaavedraJTCalumbyRNGrilloLMNascimentoTGFilsnerPHMorenoAMTransferable resistance gene optrA in Enterococcus faecalis from Swine in Brazil.Antimicrob Agents Chemother.2020May;64(6):e0014220.https://doi.org/10.1128/aac.00142-20Search in Google Scholar
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, et al. The RAST server: Rapid annotations using subsystems technology. BMC Genomics. 2008 Feb;9:75. https://doi.org/10.1186/1471-2164-9-75AzizRKBartelsDBestAADeJonghMDiszTEdwardsRAFormsmaKGerdesSGlassEMKubalMThe RAST server: Rapid annotations using subsystems technology.BMC Genomics.2008Feb;9:75.https://doi.org/10.1186/1471-2164-9-75Search in Google Scholar
Bender JK, Fleige C, Funk F, Moretó-Castellsagué C, Fischer MA, Werner G. Linezolid resistance genes and mutations among line-zolid-susceptible Enterococcus spp. – A loose cannon? Antibiotics. 2024 Jan;13(1):101. https://doi.org/10.3390/antibiotics13010101BenderJKFleigeCFunkFMoretó-CastellsaguéCFischerMAWernerG.Linezolid resistance genes and mutations among line-zolid-susceptible Enterococcus spp.-A loose cannon?Antibiotics.2024Jan;13(1):101.https://doi.org/10.3390/antibiotics13010101Search in Google Scholar
Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL, Rebelo AR, Florensa AF, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020 Dec;75(12):3491–3500. https://doi.org/10.1093/jac/dkaa345BortolaiaVKaasRSRuppeERobertsMCSchwarzSCattoirVPhilipponAAllesoeRLRebeloARFlorensaAFResFinder 4.0 for predictions of phenotypes from genotypes.J Antimicrob Chemother.2020Dec;75(12):3491–3500.https://doi.org/10.1093/jac/dkaa345Search in Google Scholar
Carvalhaes CG, Sader HS, Flamm RK, Streit JM, Mendes RE. assessment of tedizolid in vitro activity and resistance mechanisms against a collection of Enterococcus spp. causing invasive infections, including isolates requiring an optimized dosing strategy for dap-tomycin from U.S. and European medical centers, 2016 to 2018. Antimicrob Agents Chemother. 2020 Mar 24;64(4):e00175-20. https://doi.org/10.1128/aac.00175-20CarvalhaesCGSaderHSFlammRKStreitJMMendesRE.assessment of tedizolid in vitro activity and resistance mechanisms against a collection of Enterococcus spp.causing invasive infections, including isolates requiring an optimized dosing strategy for dap-tomycin from U.S. and European medical centers, 2016 to 2018. Antimicrob Agents Chemother.2020Mar24;64(4):e0017520.https://doi.org/10.1128/aac.00175-20Search in Google Scholar
Che Y, Yang Y, Xu X, Břinda K, Polz MF, Hanage WP, Zhang T. Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes. Proc Natl Acad Sci USA. 2021 Feb;118(6):e2008731118. https://doi.org/10.1073/pnas.2008731118CheYYangYXuXBřindaKPolzMFHanageWPZhangT.Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes.Proc Natl Acad Sci USA.2021Feb;118(6):e2008731118.https://doi.org/10.1073/pnas.2008731118Search in Google Scholar
Chen H, Wang X, Yin Y, Li S, Zhang Y, Wang Q, Wang H. Molecular characteristics of oxazolidinone resistance in enterococci from a multicenter study in China. BMC Microbiol. 2019 Jul 12;19(1):162. https://doi.org/10.1186/s12866-019-1537-0ChenHWangXYinYLiSZhangYWangQWangH.Molecular characteristics of oxazolidinone resistance in enterococci from a multicenter study in China.BMC Microbiol.2019Jul12;19(1):162.https://doi.org/10.1186/s12866-019-1537-0Search in Google Scholar
CLSI. Performance standards for antimicrobial susceptibility testing. 32nd ed. CLSI supplement M100. Wayne (USA): Clinical and Laboratory Standards Institute; 2022.CLSI.Performance standards for antimicrobial susceptibility testing.32nd ed.CLSI supplement M100.Wayne (USA):Clinical and Laboratory Standards Institute;2022.Search in Google Scholar
Cui L, Wang Y, Lv Y, Wang S, Song Y, Li Y, Liu J, Xue F, Yang W, Zhang J. nationwide surveillance of novel oxazolidinone resistance gene optrA in Enterococcus isolates in China from 2004 to 2014. Antimicrob Agents Chemother. 2016 Nov;60(12):7490–7493. https://doi.org/10.1128/aac.01256-16CuiLWangYLvYWangSSongYLiYLiuJXueFYangWZhangJ.nationwide surveillance of novel oxazolidinone resistance gene optrA in Enterococcus isolates in China from 2004 to 2014.Antimicrob Agents Chemother.2016Nov;60(12):7490–7493.https://doi.org/10.1128/aac.01256-16Search in Google Scholar
Deshpande LM, Castanheira M, Flamm RK, Mendes RE. Evolving oxazolidinone resistance mechanisms in a worldwide collection of enterococcal clinical isolates: results from the SENTRY Antimicrobial Surveillance Program. J Antimicrob Chemother. 2018 Sep; 73(9):2314–2322. https://doi.org/10.1093/jac/dky188DeshpandeLMCastanheiraMFlammRKMendesRE.Evolving oxazolidinone resistance mechanisms in a worldwide collection of enterococcal clinical isolates: results from the SENTRY Antimicrobial Surveillance Program.J Antimicrob Chemother.2018Sep;73(9):2314–2322.https://doi.org/10.1093/jac/dky188Search in Google Scholar
Egan SA, Shore AC, O’Connell B, Brennan GI, Coleman DC. Linezolid resistance in Enterococcus faecium and Enterococcus faecalis from hospitalized patients in Ireland: High prevalence of the MDR genes optrA and poxtA in isolates with diverse genetic backgrounds. J Antimicrob Chemother. 2020 Jul;75(7):1704–1711. https://doi.org/10.1093/jac/dkaa075EganSAShoreACO’ConnellBBrennanGIColemanDC.Lin-ezolid resistance in Enterococcus faecium and Enterococcus faecalis from hospitalized patients in Ireland: High prevalence of the MDR genes optrA and poxtA in isolates with diverse genetic backgrounds.J Antimicrob Chemother.2020Jul;75(7):1704–1711.https://doi.org/10.1093/jac/dkaa075Search in Google Scholar
Farman M, Yasir M, Al-Hindi RR, Farraj SA, Jiman-Fatani AA, Alawi M, Azhar EI. Genomic analysis of multidrug-resistant clinical Enterococcus faecalis isolates for antimicrobial resistance genes and virulence factors from the western region of Saudi Arabia. Antimicrob Resist Infect Control. 2019 Mar 25;8:55. https://doi.org/10.1186/s13756-019-0508-4FarmanMYasirMAl-HindiRRFarrajSAJiman-FataniAAAlawiMAzharEI.Genomic analysis of multidrug-resistant clinical Enterococcus faecalis isolates for antimicrobial resistance genes and virulence factors from the western region of Saudi Arabia.Antimi-crob Resist Infect Control.2019Mar25;8:55.https://doi.org/10.1186/s13756-019-0508-4Search in Google Scholar
Fioriti S, Coccitto SN, Cedraro N, Simoni S, Morroni G, Brenciani A, Mangiaterra G, Vignaroli C, Vezzulli L, Biavasco F, et al. Linezolid resistance genes in Enterococci isolated from sediment and zooplankton in two Italian coastal areas. Appl Environ Microbiol. 2021 Apr;87(9):e02958-20. https://doi.org/10.1128/AEM.02958-20FioritiSCoccittoSNCedraroNSimoniSMorroniGBrencianiAMangiaterraGVignaroliCVezzulliLBiavascoFLinezolid resistance genes in Enterococci isolated from sediment and zooplankton in two Italian coastal areas.Appl Environ Microbiol.2021Apr;87(9):e0295820.https://doi.org/10.1128/AEM.02958-20Search in Google Scholar
Freitas AR, Elghaieb H, León-Sampedro R, Abbassi MS, Novais C, Coque TM, Hassen A, Peixe L. Detection of optrA in the African continent (Tunisia) within a mosaic Enterococcus faecalis plasmid from urban wastewaters. J Antimicrob Chemother. 2017 Dec;72(12): 3245–3251. https://doi.org/10.1093/jac/dkx321FreitasARElghaiebHLeón-SampedroRAbbassiMSNovaisCCoqueTMHassenAPeixeL.Detection of optrA in the African continent (Tunisia) within a mosaic Enterococcus faecalis plasmid from urban wastewaters.J Antimicrob Chemother.2017Dec;72(12):3245–3251.https://doi.org/10.1093/jac/dkx321Search in Google Scholar
Freitas AR, Tedim AP, Novais C, Lanza VF, Peixe L. Comparative genomics of global optrA-carrying Enterococcus faecalis uncovers a common chromosomal hotspot for optrA acquisition within a diversity of core and accessory genomes. Microb Genom. 2020 Jun; 6(6):e000350. https://doi.org/10.1099/mgen.0.000350FreitasARTedimAPNovaisCLanzaVFPeixeL.Comparative genomics of global optrA-carrying Enterococcus faecalis uncovers a common chromosomal hotspot for optrA acquisition within a diversity of core and accessory genomes.Microb Genom.2020Jun;6(6):e000350.https://doi.org/10.1099/mgen.0.000350Search in Google Scholar
Haghi F, Lohrasbi V, Zeighami H. High incidence of virulence determinants, aminoglycoside and vancomycin resistance in enterococci isolated from hospitalized patients in Northwest Iran. BMC Infect Dis. 2019 Aug;19(1):744. https://doi.org/10.1186/s12879-019-4395-3HaghiFLohrasbiVZeighamiH.High incidence of virulence determinants, aminoglycoside and vancomycin resistance in enterococci isolated from hospitalized patients in Northwest Iran.BMC Infect Dis.2019Aug;19(1):744.https://doi.org/10.1186/s12879-019-4395-3Search in Google Scholar
Hasman H, Clausen PTLC, Kaya H, Hansen F, Knudsen JD, Wang M, Holzknecht BJ, Samulioniené J, Røder BL, Frimodt-Møller N, et al. LRE-Finder, a Web tool for detection of the 23S rRNA mutations and the optrA, cfr, cfr(B) and poxtA genes encoding linezolid resistance in enterococci from whole-genome sequences. J Antimicrob Chemother. 2019 Jun;74(6):1473–1476. https://doi.org/10.1093/jac/dkz092HasmanHClausenPTLCKayaHHansenFKnudsenJDWangMHolzknechtBJSamulionienéJRøderBLFrimodt-MøllerNLRE-Finder, a Web tool for detection of the 23S rRNA mutations and the optrA, cfr, cfr(B) and poxtA genes encoding linezolid resistance in enterococci from whole-genome sequences.J Antimicrob Chemother.2019Jun;74(6):1473–1476.https://doi.org/10.1093/jac/dkz092Search in Google Scholar
Hu Y, Won D, Nguyen LP, Osei KM, Seo Y, Kim J, Lee Y, Lee H, Yong D, Choi JR, et al. Prevalence and genetic analysis of resistance mechanisms of linezolid-nonsusceptible enterococci in a tertiary care hospital examined via whole-genome sequencing. Antibiotics. 2022 Nov;11(11):1624. https://doi.org/10.3390/antibiotics11111624HuYWonDNguyenLPOseiKMSeoYKimJLeeYLeeHYongDChoiJRPrevalence and genetic analysis of resistance mechanisms of linezolid-nonsusceptible enterococci in a tertiary care hospital examined via whole-genome sequencing.Antibiotics.2022Nov;11(11):1624.https://doi.org/10.3390/antibiotics11111624Search in Google Scholar
Hua R, Xia Y, Wu W, Yang M, Yan J. Molecular epidemiology and mechanisms of 43 low-level linezolid-resistant Enterococcus faecalis strains in Chongqing, China. Ann Lab Med. 2019 Jan;39(1):36–42. https://doi.org/10.3343/alm.2019.39.1.36HuaRXiaYWuWYangMYanJ.Molecular epidemiology and mechanisms of 43 low-level linezolid-resistant Enterococcus faecalis strains in Chongqing, China.Ann Lab Med.2019Jan;39(1):36–42.https://doi.org/10.3343/alm.2019.39.1.36Search in Google Scholar
Janjusevic A, Markovic Denic L, Minic R, Grgurevic A, Cirkovic I. Intestinal carriage of vancomycin-resistant Enterococcus spp. among high-risk patients in university hospitals in Serbia: Ffirst surveillance report. Ann Clin Microbiol Antimicrob. 2021 Mar;20(1):18. https://doi.org/10.1186/s12941-021-00423-0JanjusevicAMarkovic DenicLMinicRGrgurevicACirkovicI.Intestinal carriage of vancomycin-resistant Enterococcus spp.among high-risk patients in university hospitals in Serbia: Ffirst surveillance report. Ann Clin Microbiol Antimicrob.2021Mar;20(1):18.https://doi.org/10.1186/s12941-021-00423-0Search in Google Scholar
Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol. 2014 May;52(5):1501–1510. https://doi.org/10.1128/jcm.03617-13JoensenKGScheutzFLundOHasmanHKaasRSNielsenEMAarestrupFM.Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli.J Clin Microbiol.2014May;52(5):1501–1510.https://doi.org/10.1128/jcm.03617-13Search in Google Scholar
Jung YH, Cha MH, Woo GJ, Chi YM. Characterization of oxazolidinone and phenicol resistance genes in non-clinical enterococcal isolates from Korea. J Glob Antimicrob Resist. 2021 Mar;24:363–369. https://doi.org/10.1016/j.jgar.2021.01.009JungYHChaMHWooGJChiYM.Characterization of oxazolidinone and phenicol resistance genes in non-clinical enterococcal isolates from Korea.J Glob Antimicrob Resist.2021Mar;24:363–369.https://doi.org/10.1016/j.jgar.2021.01.009Search in Google Scholar
Kaas RS, Leekitcharoenphon P, Aarestrup FM, Lund O. Solving the problem of comparing whole bacterial genomes across different sequencing platforms. PLoS One. 2014 Aug;9(8):e104984. https://doi.org/10.1371/journal. pone.0104984KaasRSLeekitcharoenphonPAarestrupFMLundO.Solving the problem of comparing whole bacterial genomes across different sequencing platforms.PLoS One.2014Aug;9(8):e104984.https://doi.org/10.1371/journal. pone.0104984Search in Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol. 2018 Jun;35(6):1547–1549. https://doi.org/10.1093/molbev/msy096KumarSStecherGLiMKnyazCTamuraK.MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms.Mol Biol Evol.2018Jun;35(6):1547–1549.https://doi.org/10.1093/molbev/msy096Search in Google Scholar
Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L, Sicheritz-Pontén T, Ussery DW, Aarestrup FM, et al. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol. 2012 Apr;50(4):1355–1361. https://doi.org/10.1128/jcm.06094-11LarsenMVCosentinoSRasmussenSFriisCHasmanHMarvigRLJelsbakLSicheritz-PonténTUsseryDWAarestrupFMMultilocus sequence typing of total-genome-sequenced bacteria.J Clin Microbiol.2012Apr;50(4):1355–1361.https://doi.org/10.1128/jcm.06094-11Search in Google Scholar
Lei CW, Chen X, Liu SY, Li TY, Chen Y, Wang HN. Clonal spread and horizontal transfer mediate dissemination of phenicol-oxazolidinone-tetracycline resistance gene poxtA in enterococci isolates from a swine farm in China. Vet Microbiol. 2021 Nov;262:109219. https://doi.org/10.1016/j.vetmic.2021.109219LeiCWChenXLiuSYLiTYChenYWangHN.Clonal spread and horizontal transfer mediate dissemination of phenicol-oxazolidinone-tetracycline resistance gene poxtA in enterococci isolates from a swine farm in China.Vet Microbiol.2021Nov;262:109219.https://doi.org/10.1016/j.vetmic.2021.109219Search in Google Scholar
Li D, Li XY, Schwarz S, Yang M, Zhang SM, Hao W, Du XD. Tn6674 is a novel enterococcal optrA-carrying multiresistance transposon of the Tn554 family. Antimicrob Agents Chemother. 2019 Aug;63(9):e00809-19. https://doi.org/10.1128/aac.00809-19LiDLiXYSchwarzSYangMZhangSMHaoWDuXD.Tn6674 is a novel enterococcal optrA-carrying multiresistance transposon of the Tn554 family.Antimicrob Agents Chemother.2019Aug;63(9):e0080919.https://doi.org/10.1128/aac.00809-19Search in Google Scholar
Liu S, Yang X, Li R, Wang S, Han Z, Yang M, Zhang Y. IS6 family insertion sequences promote optrA dissemination between plasmids varying in transfer abilities. Appl Microbiol Biotechnol. 2024 Dec;108(1):132. https://doi.org/10.1007/s00253-023-12858-wLiuSYangXLiRWangSHanZYangMZhangY.IS6 family insertion sequences promote optrA dissemination between plasmids varying in transfer abilities.Appl Microbiol Biotechnol.2024Dec;108(1):132.https://doi.org/10.1007/s00253-023-12858-wSearch in Google Scholar
Ma X, Zhang F, Bai B, Lin Z, Xu G, Chen Z, Sun X, Zheng J, Deng Q, Yu Z. Linezolid resistance in Enterococcus faecalis associated with urinary tract infections of patients in a tertiary hospitals in China: Resistance mechanisms, virulence, and risk factors. Front Public Health. 2021 Feb;9:570650. https://doi.org/10.3389/fpubh.2021.570650MaXZhangFBaiBLinZXuGChenZSunXZhengJDengQYuZ.Linezolid resistance in Enterococcus faecalis associated with urinary tract infections of patients in a tertiary hospitals in China: Resistance mechanisms, virulence, and risk factors.Front Public Health.2021Feb;9:570650.https://doi.org/10.3389/fpubh.2021.570650Search in Google Scholar
Mendes RE, Deshpande L, Streit JM, Sader HS, Castanheira M, Hogan PA, Flamm RK. ZAAPS programme results for 2016: An activity and spectrum analysis of linezolid using clinical isolates from medical centres in 42 countries. J Antimicrob Chemother. 2018 Jul;73(7):1880–1887. https://doi.org/10.1093/jac/dky099MendesREDeshpandeLStreitJMSaderHSCastanheiraMHoganPAFlammRK.ZAAPS programme results for 2016: An activity and spectrum analysis of linezolid using clinical isolates from medical centres in 42 countries.J Antimicrob Chemother.2018Jul;73(7):1880–1887.https://doi.org/10.1093/jac/dky099Search in Google Scholar
Nüesch-Inderbinen M, Raschle S, Stevens MJA, Schmitt K, Stephan R. Linezolid-resistant Enterococcus faecalis ST16 harbouring optrA on a Tn6674-like element isolated from surface water. J Glob Antimicrob Resist. 2021 Jun;25:89–92. https://doi.org/10.1016/j.jgar.2021.02.029Nüesch-InderbinenMRaschleSStevensMJASchmittKStephanR.Linezolid-resistant Enterococcus faecalis ST16 harbouring optrA on a Tn6674-like element isolated from surface water.J Glob Antimicrob Resist.2021Jun;25:89–92.https://doi.org/10.1016/j.jgar.2021.02.029Search in Google Scholar
Park K, Jeong YS, Chang J, Sung H, Kim MN. Emergence of optrA-mediated linezolid-nonsusceptible Enterococcus faecalis in a tertiary care hospital. Ann Lab Med. 2020 Jul;40(4):321–325. https://doi.org/10.3343/alm.2020.40.4.321ParkKJeongYSChangJSungHKimMN.Emergence of optrA-mediated linezolid-nonsusceptible Enterococcus faecalis in a tertiary care hospital.Ann Lab Med.2020Jul;40(4):321–325.https://doi.org/10.3343/alm.2020.40.4.321Search in Google Scholar
Roy S, Aung MS, Paul SK, Ahmed S, Haque N, Khan ER, Barman TK, Islam A, Abedin S, Sultana C, et al. Drug resistance determinants in clinical isolates of Enterococcus faecalis in Bangladesh: Identification of oxazolidinone resistance gene optrA in ST59 and ST902 lineages. Microorganisms. 2020 Aug;8(8):1240. https://doi.org/10.3390/microorganisms8081240RoySAungMSPaulSKAhmedSHaqueNKhanERBarmanTKIslamAAbedinSSultanaCDrug resistance determinants in clinical isolates of Enterococcus faecalis in Bangladesh: Identification of oxazolidinone resistance gene optrA in ST59 and ST902 lineages.Microorganisms.2020Aug;8(8):1240.https://doi.org/10.3390/microorganisms8081240Search in Google Scholar
Ruiz-Ripa L, Feßler AT, Hanke D, Eichhorn I, Azcona-Gutiérrez JM, Pérez-Moreno MO, Seral C, Aspiroz C, Alonso CA, Torres L, et al. Mechanisms of linezolid resistance among enterococci of clinical origin in Spain – detection of optrA-and cfr(D)-carrying E. faecalis. Microorganisms. 2020 Jul;8(8):1155. https://doi.org/10.3390/microorganisms8081155Ruiz-RipaLFeßlerATHankeDEichhornIAzcona-GutiérrezJMPérez-MorenoMOSeralCAspirozCAlonsoCATorresLMechanisms of linezolid resistance among enterococci of clinical origin in Spain-detection of optrA-and cfr(D)-carrying E.faecalis. Microorganisms.2020Jul;8(8):1155.https://doi.org/10.3390/microorganisms8081155Search in Google Scholar
Sadowy E. Linezolid resistance genes and genetic elements enhancing their dissemination in enterococci and streptococci. Plasmid. 2018 Sep;99:89–98. https://doi.org/10.1016/j.plasmid.2018.09.011SadowyE.Linezolid resistance genes and genetic elements enhancing their dissemination in enterococci and streptococci.Plasmid.2018Sep;99:89–98.https://doi.org/10.1016/j.plasmid.2018.09.011Search in Google Scholar
Sassi M, Guérin F, Zouari A, Beyrouthy R, Auzou M, Fines-Guyon M, Potrel S, Dejoies L, Collet A, Boukthir S, et al. Emergence of optrA-mediated linezolid resistance in enterococci from France, 2006–16. J Antimicrob Chemother. 2019 Jun;74(6):1469–1472. https://doi.org/10.1093/jac/dkz097SassiMGuérinFZouariABeyrouthyRAuzouMFines-GuyonMPotrelSDejoiesLColletABoukthirSEmergence of optrA-mediated linezolid resistance in enterococci from France, 2006–16.J Antimicrob Chemother.2019Jun;74(6):1469–1472.https://doi.org/10.1093/jac/dkz097Search in Google Scholar
Schwarz S, Zhang W, Du XD, Krüger H, Feßler AT, Ma S, Zhu Y, Wu C, Shen J, Wang Y. Mobile oxazolidinone resistance genes in Gram-positive and Gram-negative bacteria. Clin Microbiol Rev. 2021 Jun;34(3):e0018820. https://doi.org/10.1128/cmr.00188-20SchwarzSZhangWDuXDKrügerHFeßlerATMaSZhuYWuCShenJWangY.Mobile oxazolidinone resistance genes in Gram-positive and Gram-negative bacteria.Clin Microbiol Rev.2021Jun;34(3):e0018820.https://doi.org/10.1128/cmr.00188-20Search in Google Scholar
Shang Y, Li D, Shan X, Schwarz S, Zhang SM, Chen YX, Ouyang W, Du XD. Analysis of two pheromone-responsive conjugative multiresistance plasmids carrying the novel mobile optrA locus from Enterococcus faecalis. Infect Drug Resist. 2019 Aug;12:2355–2362. https://doi.org/10.2147/idr.s206295ShangYLiDShanXSchwarzSZhangSMChenYXOuyangWDuXD.Analysis of two pheromone-responsive conjugative multiresistance plasmids carrying the novel mobile optrA locus from Enterococcus faecalis.Infect Drug Resist.2019Aug;12:2355–2362.https://doi.org/10.2147/idr.s206295Search in Google Scholar
Sharkey LK, Edwards TA, O’Neill AJ. ABC-F proteins mediate antibiotic resistance through ribosomal protection. mBio. 2016 Mar; 7(2):e01975. https://doi.org/10.1128/mBio.01975-15SharkeyLKEdwardsTAO’NeillAJ.ABC-F proteins mediate antibiotic resistance through ribosomal protection.mBio.2016Mar;7(2):e01975.https://doi.org/10.1128/mBio.01975-15Search in Google Scholar
Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EP, de la Cruz F. Mobility of plasmids. Microbiol Mol Biol Rev. 2010 Sep;74(3):434–452. https://doi.org/10.1128/mmbr.00020-10SmillieCGarcillán-BarciaMPFranciaMVRochaEPde la CruzF.Mobility of plasmids.Microbiol Mol Biol Rev.2010Sep;74(3):434–452.https://doi.org/10.1128/mmbr.00020-10Search in Google Scholar
Sullivan MJ, Petty NK, Beatson SA. Easyfig: A genome comparison visualizer. Bioinformatics. 2011 Apr;27(7):1009–1010. https://doi.org/10.1093/bioinformatics/btr039SullivanMJPettyNKBeatsonSA.Easyfig: A genome comparison visualizer.Bioinformatics.2011Apr;27(7):1009–1010.https://doi.org/10.1093/bioinformatics/btr039Search in Google Scholar
Tamang MD, Moon DC, Kim SR, Kang HY, Lee K, Nam HM, Jang GC, Lee HS, Jung SC, Lim SK. Detection of novel oxazolidinone and phenicol resistance gene optrA in enterococcal isolates from food animals and animal carcasses. Vet Microbiol. 2017 Mar; 201:252–256. https://doi.org/10.1016/j.vetmic.2017.01.035TamangMDMoonDCKimSRKangHYLeeKNamHMJangGCLeeHSJungSCLimSK.Detection of novel oxazoli-dinone and phenicol resistance gene optrA in enterococcal isolates from food animals and animal carcasses.Vet Microbiol.2017Mar;201:252–256.https://doi.org/10.1016/j.vetmic.2017.01.035Search in Google Scholar
Wang Y, Li X, Fu Y, Chen Y, Wang Y, Ye D, Wang C, Hu X, Zhou L, Du J, et al. Association of florfenicol residues with the abundance of oxazolidinone resistance genes in livestock manures. J Hazard Mater. 2020 Nov;399:123059. https://doi.org/10.1016/j.jhazmat.2020.123059WangYLiXFuYChenYWangYYeDWangCHuXZhouLDuJAssociation of florfenicol residues with the abundance of oxazolidinone resistance genes in livestock manures.J Hazard Mater.2020Nov;399:123059.https://doi.org/10.1016/j.jhazmat.2020.123059Search in Google Scholar
Wang Y, Lv Y, Cai J, Schwarz S, Cui L, Hu Z, Zhang R, Li J, Zhao Q, He T, et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J Antimicrob Chemother. 2015 Aug;70(8):2182–2190. https://doi.org/10.1093/jac/dkv116WangYLvYCaiJSchwarzSCuiLHuZZhangRLiJZhaoQHeTA novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin.J Antimicrob Chemother.2015Aug;70(8):2182–2190.https://doi.org/10.1093/jac/dkv116Search in Google Scholar
Weiner-Lastinger LM, Abner S, Edwards JR, Kallen AJ, Karlsson M, Magill SS, Pollock D, See I, Soe MM, Walters MS, et al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect Control Hosp Epidemiol. 2020 Jan;41(1):1–18. https://doi.org/10.1017/ice.2019.296Weiner-LastingerLMAbnerSEdwardsJRKallenAJKarlssonMMagillSSPollockDSeeISoeMMWaltersMSAntimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017.Infect Control Hosp Epidemiol.2020Jan;41(1):1–18.https://doi.org/10.1017/ice.2019.296Search in Google Scholar
Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, Edwards JR, Sievert DM. Antimicrobial-resistant pathogens associated with healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol. 2016 Nov;37(11):1288–1301. https://doi.org/10.1017/ice.2016.174WeinerLMWebbAKLimbagoBDudeckMAPatelJKallenAJEdwardsJRSievertDM.Antimicrobial-resistant pathogens associated with healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014.Infect Control Hosp Epidemiol.2016Nov;37(11):1288–1301.https://doi.org/10.1017/ice.2016.174Search in Google Scholar
Young S, Rohr JR, Harwood VJ. Vancomycin resistance plasmids affect persistence of Enterococcus faecium in water. Water Res. 2019 Dec;166:115069. https://doi.org/10.1016/j.watres.2019.115069YoungSRohrJRHarwoodVJ.Vancomycin resistance plasmids affect persistence of Enterococcus faecium in water.Water Res.2019Dec;166:115069.https://doi.org/10.1016/j.watres.2019.115069Search in Google Scholar
Zhang Y, Dong G, Li J, Chen L, Liu H, Bi W, Lu H, Zhou T. A high incidence and coexistence of multiresistance genes cfr and optrA among linezolid-resistant enterococci isolated from a teaching hospital in Wenzhou, China. Eur J Clin Microbiol Infect Dis. 2018 Aug; 37(8):1441–1448. https://doi.org/10.1007/s10096-018-3269-8ZhangYDongGLiJChenLLiuHBiWLuHZhouT.A high incidence and coexistence of multiresistance genes cfr and optrA among linezolid-resistant enterococci isolated from a teaching hospital in Wenzhou, China.Eur J Clin Microbiol Infect Dis.2018Aug;37(8):1441–1448.https://doi.org/10.1007/s10096-018-3269-8Search in Google Scholar
Zhou W, Gao S, Xu H, Zhang Z, Chen F, Shen H, Zhang C. Distribution of the optrA gene in Enterococcus isolates at a tertiary care hospital in China. J Glob Antimicrob Resist. 2019 Jun;17:180–186. https://doi.org/10.1016/j.jgar.2019.01.001
ZhouWGaoSXuHZhangZChenFShenHZhangC.Distribution of the optrA gene in Enterococcus isolates at a tertiary care hospital in China.J Glob Antimicrob Resist.2019Jun;17:180–186.https://doi.org/10.1016/j.jgar.2019.01.001