This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Acharya PB, Acharya DK, Modi HA. Optimization for cellulase production by Aspergillus niger using saw dust as substrate. Afr J Biotechnol. 2008 Nov;7(22):4147–4152.AcharyaPBAcharyaDKModiHA.Optimization for cellulase production by Aspergillus niger using saw dust as substrate. Afr J Biotechnol. 2008Nov;7(22):4147–4152.Search in Google Scholar
Aehle W. Enzymes in industry – production and applications. Weinheim (Germany): Wiley-VCH/Verlag GmbH & Co.; 2007. p. 96–98. https://doi.org/10.1002/9783527617098AehleW.Enzymes in industry – production and applications. Weinheim (Germany): Wiley-VCH/Verlag GmbH & Co.; 2007. p. 96–98. https://doi.org/10.1002/9783527617098Search in Google Scholar
Bai S, Ravi M, Mukesh P, Kumar DJ, Balashanmugam P, Bala MD. Cellulase production by Bacillus subtilis isolated from cow dung. Arch Appl Sci Res. 2012;4(1):269–279.BaiSRaviMMukeshPKumarDJBalashanmugamPBalaMD.Cellulase production by Bacillus subtilis isolated from cow dung. Arch Appl Sci Res. 2012;4(1):269–279.Search in Google Scholar
Birnboim HC, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523.https://doi.org/10.1093/nar/7.6.1513BirnboimHCDolyJ.A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979Nov24;7(6):1513–1523.https://doi.org/10.1093/nar/7.6.1513Search in Google Scholar
Daniel R. The metagenomics of soil. Nat Rev Microbiol. 2005 Jun; 3(6):470–478. https://doi.org/10.1038/nrmicro1160DanielR.The metagenomics of soil. Nat Rev Microbiol. 2005Jun; 3(6):470–478. https://doi.org/10.1038/nrmicro1160Search in Google Scholar
Dhillon GS, Brar SK, Verma M, Tyagi RD. Recent advances in citric acid bio-production and recovery. Food Bioprocess Technol. 2011;4:505–529. https://doi.org/10.1007/s11947-010-0399-0DhillonGSBrarSKVermaMTyagiRD.Recent advances in citric acid bio-production and recovery. Food Bioprocess Technol. 2011;4:505–529. https://doi.org/10.1007/s11947-010-0399-0Search in Google Scholar
Kosana RC, Salwan R, Dhar H, Dutt S, Gulati A. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr Microbiol. 2008 Nov;57(5):503–507. https://doi.org/10.1007/s00284-008-9276-8KosanaRCSalwanRDharHDuttSGulatiA.A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr Microbiol. 2008Nov;57(5):503–507. https://doi.org/10.1007/s00284-008-9276-8Search in Google Scholar
Kennedy J, O’Leary ND, Kiran GS, Morrissey JP, O’Gara F, Selvin J, Dobson AD. Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. J Appl Microbiol. 2011 Oct;111(4):787–799. https://doi.org/10.1111/j.1365-2672.2011.05106.xKennedyJO’LearyNDKiranGSMorrisseyJPO’GaraFSelvinJDobsonAD.Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. J Appl Microbiol. 2011Oct;111(4):787–799. https://doi.org/10.1111/j.1365-2672.2011.05106.xSearch in Google Scholar
King BC, Donnelly MK, Bergstrom GC, Walker LP, Gibson DM. An optimized microplate assay system for quantitative evaluation of plant cell wall-degrading enzyme activity of fungal culture extracts. Biotechnol Bioeng. 2009 Mar;102(4):1033–1044. https://doi.org/10.1002/bit.22151KingBCDonnellyMKBergstromGCWalkerLPGibsonDM.An optimized microplate assay system for quantitative evaluation of plant cell wall-degrading enzyme activity of fungal culture extracts. Biotechnol Bioeng. 2009Mar;102(4):1033–1044. https://doi.org/10.1002/bit.22151Search in Google Scholar
Li X, Yang H, Roy B, Wang D, Yue W, Jiang L, Park EY, Miao Y. The most stirring technology in future; cellulase enzyme and biomass utilization. Afr J Biotechnol. 2009 Jun;8(11):2418–2422.LiXYangHRoyBWangDYueWJiangLParkEYMiaoY.The most stirring technology in future; cellulase enzyme and biomass utilization. Afr J Biotechnol. 2009Jun;8(11):2418–2422.Search in Google Scholar
Liang YL, Zhang Z, Wu M, Wu Y, Feng JX. Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. Biomed Res Int. 2014;2014:512497. https://doi.org/10.1155/2014/512497LiangYLZhangZWuMWuYFengJX.Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. Biomed Res Int. 2014;2014:512497. https://doi.org/10.1155/2014/512497Search in Google Scholar
Liu J, Liu WD, Zhao XL, Shen WJ, Cao H, Cui ZL. Cloning and functional characterization of a novel endo-β-1,4-glucanase gene from a soil-derived metagenomic library. Appl Microbiol Biotechnol. 2011 Feb;89(4):1083–1092. https://doi.org/10.1007/s00253-010-2828-4LiuJLiuWDZhaoXLShenWJCaoHCuiZL.Cloning and functional characterization of a novel endo-β-1,4-glucanase gene from a soil-derived metagenomic library. Appl Microbiol Biotechnol. 2011Feb;89(4):1083–1092. https://doi.org/10.1007/s00253-010-2828-4Search in Google Scholar
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002 Sep;66(3):506–577. https://doi.org/10.1128/mmbr.66.3.506-577.2002LyndLRWeimerPJvan ZylWHPretoriusIS.Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002Sep;66(3):506–577. https://doi.org/10.1128/mmbr.66.3.506-577.2002Search in Google Scholar
Maniatis T, Fritsch EF, Sambrook J. Molecular cloning: a laboratory manual. New York (USA): Cold Spring Harbor; 1982. p. 54.ManiatisTFritschEFSambrookJ.Molecular cloning: a laboratory manual. New York (USA): Cold Spring Harbor; 1982. p. 54.Search in Google Scholar
Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31(3):426–428. https://doi.org/10.1021/ac60147a030MillerGL.Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31(3):426–428. https://doi.org/10.1021/ac60147a030Search in Google Scholar
Monserrate E, Leschine SB, Canale-Parola E. Clostridium hungatei sp. nov., a mesophilic, N2-fixing cellulolytic bacterium isolated from soil. Int J Syst Evol Microbiol. 2001 Jan;51(Pt 1):123–132. https://doi.org/10.1099/00207713-51-1-123MonserrateELeschineSBCanale-ParolaE.Clostridium hungatei sp. nov., a mesophilic, N2-fixing cellulolytic bacterium isolated from soil. Int J Syst Evol Microbiol. 2001Jan;51(Pt 1):123–132. https://doi.org/10.1099/00207713-51-1-123Search in Google Scholar
Mrudula S, Murugammal R. Production of cellulose by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Braz J Microbiol. 2011 Jul;42(3):1119–1127. https://doi.org/10.1590/S1517-838220110003000033MrudulaSMurugammalR.Production of cellulose by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Braz J Microbiol. 2011Jul;42(3):1119–1127. https://doi.org/10.1590/S1517-838220110003000033Search in Google Scholar
Nacke H, Engelhaupt M, Brady S, Fischer C, Tautzt J, Daniel R. Identification and characterization of novel cellulolytic and hemicellulolytic genes and enzymes derived from German grassland soil metagenomes. Biotechnol Lett. 2012 Apr;34(4):663–675. https://doi.org/10.1007/s10529-011-0830-2NackeHEngelhauptMBradySFischerCTautztJDanielR.Identification and characterization of novel cellulolytic and hemicellulolytic genes and enzymes derived from German grassland soil metagenomes. Biotechnol Lett. 2012Apr;34(4):663–675. https://doi.org/10.1007/s10529-011-0830-2Search in Google Scholar
Quiroz-Castañeda RE, Balcázar-López E, Dantán-González E, Martinez A, Folch-Mallol J, Martínez Anaya C. Characterization of cellulolytic activities of Bjerkandera adusta and Pycnoporus sanguineuson solid wheat straw medium. Electron J Biotechnol. 2009, 12(4):1–8.Quiroz-CastañedaREBalcázar-LópezEDantán-GonzálezEMartinezAFolch-MallolJMartínez AnayaC.Characterization of cellulolytic activities of Bjerkandera adusta and Pycnoporus sanguineuson solid wheat straw medium. Electron J Biotechnol. 2009, 12(4):1–8.Search in Google Scholar
Sethi S, Datta A, Gupta BL, Gupta S. Optimization of cellulase production from bacteria isolated from soil. ISRN Biotechnol. 2013 Feb;2013:985685. https://doi.org/10.5402/2013/985685SethiSDattaAGuptaBLGuptaS.Optimization of cellulase production from bacteria isolated from soil. ISRN Biotechnol. 2013Feb;2013:985685. https://doi.org/10.5402/2013/985685Search in Google Scholar
Sukumaran RK, Singhania RR, Pandey A. Microbial cellulases – production, applications and challenges. J Sci Ind Res. 2005 Nov; 64(11):832–844.SukumaranRKSinghaniaRRPandeyA.Microbial cellulases – production, applications and challenges. J Sci Ind Res. 2005Nov; 64(11):832–844.Search in Google Scholar
Uchiyama T, Miyazaki K. Functional metagenomics for enzyme discovery: challenges to efficient screening. Curr Opin Biotechnol. 2009 Dec;20(6):616–622. https://doi.org/10.1016/j.copbio.2009.09.010UchiyamaTMiyazakiK.Functional metagenomics for enzyme discovery: challenges to efficient screening. Curr Opin Biotechnol. 2009Dec;20(6):616–622. https://doi.org/10.1016/j.copbio.2009.09.010Search in Google Scholar
UNESCO. Mosi-oa-Tunya/Victoria Falls [Internet]. Paris (France): UNESCO; 1989 [cited 2022 Aug 20]. Available from http://whc.unesco.org/en/list/509UNESCO. Mosi-oa-Tunya/Victoria Falls [Internet]. Paris (France): UNESCO; 1989 [cited 2022 Aug 20]. Available from http://whc.unesco.org/en/list/509Search in Google Scholar
Wang F, Li F, Chen G, Liu W. Isolation and characterization of novel cellulase genes from uncultured microorganisms in different environmental niches. Microbiol Res. 2009;164(6):650–657. https://doi.org/10.1016/j.micres.2008.12.002WangFLiFChenGLiuW.Isolation and characterization of novel cellulase genes from uncultured microorganisms in different environmental niches. Microbiol Res. 2009;164(6):650–657. https://doi.org/10.1016/j.micres.2008.12.002Search in Google Scholar
Xiao Z, Storms R, Tsang A. Microplate-based filter paper assay to measure total cellulase activity. Biotechnol Bioeng. 2004 Dec;88(7): 832–837. https://doi.org/10.1002/bit.20286XiaoZStormsRTsangA.Microplate-based filter paper assay to measure total cellulase activity. Biotechnol Bioeng. 2004Dec;88(7): 832–837. https://doi.org/10.1002/bit.20286Search in Google Scholar