Heilongjiang Academy of Black Soil Conservation and UtilizationBeijing, People’s Republic of China
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesBeijing, People’s Republic of China
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen UniversityGuangzhou, People’s Republic of China
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesBeijing, People’s Republic of China
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen UniversityGuangzhou, People’s Republic of China
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesBeijing, People’s Republic of China
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen UniversityGuangzhou, People’s Republic of China
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Aguilar-Barajas E, Díaz-Pérez C, Ramírez-Díaz MI, Riveros-Rosas H, Cervantes C. Bacterial transport of sulfate, molybdate, and related oxyanions. Biometals. 2011 Aug; 24(4):687–707. https://doi.org/10.1007/s10534-011-9421-xAguilar-BarajasEDíaz-PérezCRamírez-DíazMIRiveros-RosasHCervantesCBacterial transport of sulfate, molybdate, and related oxyanionsBiometals2011Aug244687707https://doi.org/10.1007/s10534-011-9421-x10.1007/s10534-011-9421-x21301930Search in Google Scholar
Aliyu H, De Maayer P, Cowan D. The genome of the Antarctic polyextremophile Nesterenkonia sp. AN1 reveals adaptive strategies for survival under multiple stress conditions. FEMS Microbiol Ecol. 2016 Apr;92(4):fiw032. https://doi.org/10.1093/femsec/fiw032AliyuHDeMaayer PCowanDThe genome of the Antarctic polyextremophile Nesterenkonia spAN1 reveals adaptive strategies for survival under multiple stress conditions. FEMS Microbiol Ecol2016Apr924fiw032https://doi.org/10.1093/femsec/fiw03210.1093/femsec/fiw03226884466Search in Google Scholar
Amiri H, Azarbaijani R, Parsa Yeganeh L, Shahzadeh Fazeli A, Tabatabaei M, Salekdeh GH, Karimi K. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions. Sci Rep. 2016 Jan 4;6:18408. https://doi.org/10.1038/srep18408AmiriHAzarbaijaniRParsaYeganeh LShahzadehFazeli ATabatabaeiMSalekdehGHKarimiKNesterenkonia spstrain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions. Sci Rep2016Jan 4618408https://doi.org/10.1038/srep1840810.1038/srep18408469873726725518Search in Google Scholar
Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, Ogata H. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2020 Apr 1;36(7):2251–2252. https://doi.org/10.1093/bioinformatics/btz859AramakiTBlanc-MathieuREndoHOhkuboKKanehisaMGotoSOgataHKofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score thresholdBioinformatics2020Apr 136722512252https://doi.org/10.1093/bioinformatics/btz85910.1093/bioinformatics/btz859714184531742321Search in Google Scholar
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics. 2008 Feb 8;9:75. https://doi.org/10.1186/1471-2164-9-75AzizRKBartelsDBestAADeJonghMDiszTEdwardsRAFormsmaKGerdesSGlassEMKubalMet alThe RAST Server: rapid annotations using subsystems technologyBMC Genomics2008Feb 8975https://doi.org/10.1186/1471-2164-9-7510.1186/1471-2164-9-75226569818261238Search in Google Scholar
Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, Weber T. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021 Jul 2; 49(W1):W29–W35. https://doi.org/10.1093/nar/gkab335BlinKShawSKloostermanAMCharlop-PowersZvanWezel GPMedemaMHWeberTantiSMASH 6.0: improving cluster detection and comparison capabilitiesNucleic Acids Res2021Jul 249W1W29W35https://doi.org/10.1093/nar/gkab33510.1093/nar/gkab335826275533978755Search in Google Scholar
Boch J, Kempf B, Schmid R, Bremer E. Synthesis of the osmoprotectant glycine betaine in Bacillus subtilis: characterization of the gbsAB genes. J Bacteriol. 1996 Sep;178(17):5121–5129. https://doi.org/10.1128/jb.178.17.5121-5129.1996BochJKempfBSchmidRBremerESynthesis of the osmoprotectant glycine betaine in Bacillus subtilis: characterization of the gbsAB genesJ Bacteriol1996Sep1781751215129https://doi.org/10.1128/jb.178.17.5121-5129.199610.1128/jb.178.17.5121-5129.19961783078752328Search in Google Scholar
Bursy J, Kuhlmann AU, Pittelkow M, Hartmann H, Jebbar M, Pierik AJ, Bremer E. Synthesis and uptake of the compatible solutes ectoine and 5-hydroxyectoine by Streptomyces coelicolor A3(2) in response to salt and heat stresses. Appl Environ Microbiol. 2008 Dec; 74(23):7286–7296. https://doi.org/10.1128/AEM.00768-08BursyJKuhlmannAUPittelkowMHartmannHJebbarMPierikAJBremerESynthesis and uptake of the compatible solutes ectoine and 5-hydroxyectoine by Streptomyces coelicolor A3(2) in response to salt and heat stressesAppl Environ Microbiol2008Dec742372867296https://doi.org/10.1128/AEM.00768-0810.1128/AEM.00768-08259290718849444Search in Google Scholar
Chander AM, Nair RG, Kaur G, Kochhar R, Dhawan DK, Bhadada SK, Mayilraj S. Genome insight and comparative pathogenomic analysis of Nesterenkonia jeotgali strain CD08_7 Isolated from duodenal mucosa of celiac disease patient. Front Microbiol. 2017 Feb 2;8:129. https://doi.org/10.3389/fmicb.2017.00129ChanderAMNairRGKaurGKochharRDhawanDKBhadadaSKMayilrajSGenome insight and comparative pathogenomic analysis of Nesterenkonia jeotgali strain CD08_7 Isolated from duodenal mucosa of celiac disease patientFront Microbiol2017Feb 28129https://doi.org/10.3389/fmicb.2017.0012910.3389/fmicb.2017.00129528833528210247Search in Google Scholar
Chavarría M, Nikel PI, Pérez-Pantoja D, de Lorenzo V. The Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress. Environ Microbiol. 2013 Jun; 15(6):1772–17785. https://doi.org/10.1111/1462-2920.12069ChavarríaMNikelPIPérez-PantojaDdeLorenzo VThe Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stressEnviron Microbiol2013Jun156177217785https://doi.org/10.1111/1462-2920.1206910.1111/1462-2920.1206923301697Search in Google Scholar
Chen Y, Wang F. Insights on nitrate respiration by Shewanella. Front. Mar. Sci. 2015;1:80. https://doi.org/10.3389/fmars.2014.00080ChenYWangFInsights on nitrate respiration by ShewanellaFront. Mar. Sci2015180https://doi.org/10.3389/fmars.2014.0008010.3389/fmars.2014.00080Search in Google Scholar
Chole P, Ravi L, Krishnan K. Isolation of thermophilic Actinobacteria from different habitats. In: Dharumadurai D, editor. Methods in Actinobacteriology. Springer Protocols Handbooks. New York (USA): Humana; 2022. https://doi.org/10.1007/978-1-0716-1728-1_23CholePRaviLKrishnanKIsolation of thermophilic Actinobacteria from different habitats. In: Dharumadurai D, editor. Methods in Actinobacteriology. Springer Protocols HandbooksNew York (USA)Humana2022https://doi.org/10.1007/978-1-0716-1728-1_2310.1007/978-1-0716-1728-1_23Search in Google Scholar
Collins MD, Lawson PA, Labrenz M, Tindall BJ, Weiss N, Hirsch P. Nesterenkonia lacusekhoensis sp. nov. isolated from hypersaline Ekho Lake, East Antarctica, and emended description of the genus Nesterenkonia. Int J Syst Evol Microbiol. 2002 Jul;52(Pt 4):1145–1150. https://doi.org/10.1099/00207713-52-4-1145CollinsMDLawsonPALabrenzMTindallBJWeissNHirschPNesterenkonia lacusekhoensis spnov. isolated from hypersaline Ekho Lake, East Antarctica, and emended description of the genus Nesterenkonia. Int J Syst Evol Microbiol2002Jul52Pt 411451150https://doi.org/10.1099/00207713-52-4-114510.1099/00207713-52-4-114512148619Search in Google Scholar
Dai D, Lu H, Xing P, Wu Q. Comparative genomic analyses of the genus Nesterenkonia unravels the genomic adaptation to polar extreme environments. Microorganisms. 2022 Jan 21;10(2):233. https://doi.org/10.3390/microorganisms10020233DaiDLuHXingPWuQComparative genomic analyses of the genus Nesterenkonia unravels the genomic adaptation to polar extreme environmentsMicroorganisms2022Jan 21102233https://doi.org/10.3390/microorganisms1002023310.3390/microorganisms10020233887537635208688Search in Google Scholar
Delgado O, Quillaguamán J, Bakhtiar S, Mattiasson B, Gessesse A, Hatti-Kaul R. Nesterenkonia aethiopica sp. nov. an alkaliphilic, moderate halophile isolated from an Ethiopian soda lake. Int J Syst Evol Microbiol. 2006 Jun;56(6):1229–1232. https://doi.org/10.1099/ijs.0.63633-0DelgadoOQuillaguamánJBakhtiarSMattiassonBGessesseAHatti-KaulRNesterenkonia aethiopica spnov. an alkaliphilic, moderate halophile isolated from an Ethiopian soda lake. Int J Syst Evol Microbiol2006Jun56612291232https://doi.org/10.1099/ijs.0.63633-010.1099/ijs.0.63633-016738096Search in Google Scholar
Delmont TO, Eren AM. Linking pangenomes and metagenomes: the Prochlorococcus metapangenome. PeerJ. 2018 Jan 25;6:e4320. https://doi.org/10.7717/peerj.4320DelmontTOErenAMLinking pangenomes and metagenomes: the Prochlorococcus metapangenomePeerJ2018Jan 256e4320https://doi.org/10.7717/peerj.432010.7717/peerj.4320580431929423345Search in Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004 Mar 19;32(5): 1792–1797. https://doi.org/10.1093/nar/gkh340EdgarRCMUSCLE: multiple sequence alignment with high accuracy and high throughputNucleic Acids Res2004Mar 1932517921797https://doi.org/10.1093/nar/gkh34010.1093/nar/gkh34039033715034147Search in Google Scholar
Edouard S, Sankar S, Dangui NP, Lagier JC, Michelle C, Raoult D, Fournier PE. Genome sequence and description of Nesterenkonia massiliensis sp. nov. strain NP 1(T.). Stand Genomic Sci. 2014 Apr 1; 9(3):866–882. https://doi.org/10.4056/sigs.5631022EdouardSSankarSDanguiNPLagierJCMichelleCRaoultDFournierPEGenome sequence and description of Nesterenkonia massiliensis spnov. strain NP 1(T.). Stand Genomic Sci2014Apr 193866882https://doi.org/10.4056/sigs.563102210.4056/sigs.5631022414899125197469Search in Google Scholar
Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015 Oct 8;3:e1319. https://doi.org/10.7717/peerj.1319ErenAMEsen ÖCQuince CVineisJHMorrisonHGSoginMLDelmontTOAnvi’o: an advanced analysis and visualization platform for ‘omics dataPeerJ2015Oct 83e1319https://doi.org/10.7717/peerj.131910.7717/peerj.1319461481026500826Search in Google Scholar
Finore I, Orlando P, Di Donato P, Leone L, Nicolaus B, Poli A. Nesterenkonia aurantiaca sp. nov. an alkaliphilic actinobacterium isolated from Antarctica. Int J Syst Evol Microbiol. 2016 Mar;66(3): 1554–1560. https://doi.org/10.1099/ijsem.0.000917FinoreIOrlandoPDiDonato PLeoneLNicolausBPoliANesterenkonia aurantiaca spnov. an alkaliphilic actinobacterium isolated from Antarctica. Int J Syst Evol Microbiol2016Mar66315541560https://doi.org/10.1099/ijsem.0.00091710.1099/ijsem.0.00091726813578Search in Google Scholar
Frikha-Dammak D, Ayadi H, Hakim-Rekik I, Belbahri L, Maalej S. Genome analysis of the salt-resistant Paludifilum halophilum DSM 102817T reveals genes involved in flux-tuning of ectoines and unexplored bioactive secondary metabolites. World J Microbiol Biotechnol. 2021 Sep 22;37(10):178. https://doi.org/10.1007/s11274-021-03147-7Frikha-DammakDAyadiHHakim-RekikIBelbahriLMaalejSGenome analysis of the salt-resistant Paludifilum halophilum DSM 102817T reveals genes involved in flux-tuning of ectoines and unexplored bioactive secondary metabolitesWorld J Microbiol Biotechnol2021Sep 223710178https://doi.org/10.1007/s11274-021-03147-710.1007/s11274-021-03147-734549358Search in Google Scholar
Govender L, Naidoo L, Setati ME. Nesterenkonia suensis sp. nov. a haloalkaliphilic actinobacterium isolated from a salt pan. Int J Syst Evol Microbiol. 2013 Jan;63(Pt_1):41–46. https://doi.org/10.1099/ijs.0.035006-0GovenderLNaidooLSetatiMENesterenkonia suensis spnov. a haloalkaliphilic actinobacterium isolated from a salt pan. Int J Syst Evol Microbiol2013Jan63Pt_14146https://doi.org/10.1099/ijs.0.035006-010.1099/ijs.0.035006-022328610Search in Google Scholar
Grant JR, Arantes AS, Stothard P. Comparing thousands of circular genomes using the CGView Comparison Tool. BMC Genomics. 2012 May 23;13:202. https://doi.org/10.1186/1471-2164-13-202GrantJRArantesASStothardPComparing thousands of circular genomes using the CGView Comparison ToolBMC Genomics2012May 2313202https://doi.org/10.1186/1471-2164-13-20210.1186/1471-2164-13-202346935022621371Search in Google Scholar
Guerrero-Garzón JF, Zehl M, Schneider O, Rückert C, Busche T, Kalinowski J, Bredholt H, Zotchev SB. Streptomyces spp. from the marine sponge Antho dichotoma: Analyses of secondary metabolite biosynthesis gene clusters and some of their products. Front Micro-biol. 2020 Mar 18;11:437. https://doi.org/10.3389/fmicb.2020.00437Guerrero-GarzónJFZehlMSchneiderORückertCBuscheTKalinowskiJBredholtHZotchevSBStreptomyces sppfrom the marine sponge Antho dichotoma: Analyses of secondary metabolite biosynthesis gene clusters and some of their products. Front Micro-biol2020Mar 1811437https://doi.org/10.3389/fmicb.2020.0043710.3389/fmicb.2020.00437709358732256483Search in Google Scholar
He L, Xiao Y, Gebreselassie N, Zhang F, Antoniewiez MR, Tang YJ, Peng L. Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis. Biotechnol Bioeng. 2014 Mar;111(3):575–585. https://doi.org/10.1002/bit.25124HeLXiaoYGebreselassieNZhangFAntoniewiezMRTangYJPengLCentral metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysisBiotechnol Bioeng2014Mar1113575585https://doi.org/10.1002/bit.2512410.1002/bit.25124590167724122357Search in Google Scholar
Hollinshead WD, Rodriguez S, Martin HG, Wang G, Baidoo EE, Sale KL, Keasling JD, Mukhopadhyay A, Tang YJ. Examining Escherichia coli glycolytic pathways, catabolite repression, and metabolite channeling using Δpfk mutants. Biotechnol Biofuels. 2016 Oct 10;9:212. https://doi.org/10.1186/s13068-016-0630-yHollinsheadWDRodriguezSMartinHGWangGBaidooEESaleKLKeaslingJDMukhopadhyayATangYJExamining Escherichia coli glycolytic pathways, catabolite repression, and metabolite channeling using Δpfk mutantsBiotechnol Biofuels2016Oct 109212https://doi.org/10.1186/s13068-016-0630-y10.1186/s13068-016-0630-y505726127766116Search in Google Scholar
Horikoshi K, Akiba T. Alkalophilic microorganisms: A new microbial world. Tokyo (Japan): Japan Scientific Societies Press; Berlin, Heidelberg (Germany): Springer-Verlag; 1982.HorikoshiKAkibaTAlkalophilic microorganisms: A new microbial worldTokyo (Japan)Japan Scientific Societies Press; Berlin, Heidelberg (Germany): Springer-Verlag;1982Search in Google Scholar
Horikoshi, K. Production of alkaline enzymes by alkalophilic microorganisms: Part II. Alkaline amylase produced by Bacillus No. A-40-2. Agric Biol Chem. 1971;35(11):1783–1791. https://doi.org/10.1080/00021369.1971.10860143HorikoshiKProduction of alkaline enzymes by alkalophilic microorganisms: Part IIAlkaline amylase produced by Bacillus No. A-40-2. Agric Biol Chem1971351117831791https://doi.org/10.1080/00021369.1971.1086014310.1271/bbb1961.36.285Search in Google Scholar
Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018 Nov 30; 9(1): 5114. https://doi.org/10.1038/s41467-018-07641-9JainCRodriguez-RLMPhillippyAMKonstantinidisKTAluruSHigh throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundariesNat Commun2018Nov 30915114https://doi.org/10.1038/s41467-018-07641-910.1038/s41467-018-07641-9626947830504855Search in Google Scholar
Jones BE, Grant WD, Duckworth AW, Schumann P, Weiss N, Stackebrandt E. Cellulomonas bogoriensis sp. nov. an alkaliphilic cellulomonad. Int J Syst Evol Microbiol. 2005 Jul;55(4):1711–1714. https://doi.org/10.1099/ijs.0.63646-0JonesBEGrantWDDuckworthAWSchumannPWeissNStackebrandtECellulomonas bogoriensis spnov. an alkaliphilic cellulomonad. Int J Syst Evol Microbiol2005Jul55417111714https://doi.org/10.1099/ijs.0.63646-010.1099/ijs.0.63646-016014506Search in Google Scholar
Kaari M, Baskaran, A, Venugopal G, Manikkam R, Bhaskar PV. Isolation of psychrophilic and psychrotolerant Actinobacteria. In: Dharumadurai D, editor. Methods in Actinobacteriology. Springer Protocols Handbooks. New York (USA): Humana; 2022. https://doi.org/10.1007/978-1-0716-1728-1_21KaariMBaskaranAVenugopalGManikkamRBhaskarPVIsolation of psychrophilic and psychrotolerant ActinobacteriaInDharumaduraiDeditorMethods in Actinobacteriology. Springer Protocols HandbooksNew York (USA)Humana2022https://doi.org/10.1007/978-1-0716-1728-1_2110.1007/978-1-0716-1728-1_21Search in Google Scholar
Koch AL. Were Gram-positive rods the first bacteria? Trends Micro-biol. 2003 Apr; 11(4):166–170. https://doi.org/10.1016/s0966-842x(03)00063-5KochALWere Gram-positive rods the first bacteria?Trends Micro-biol2003Apr114166170https://doi.org/10.1016/s0966-842x(03)00063-510.1016/S0966-842X(03)00063-5Search in Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol. 2016 Jul;33(7):1870–1874. https://doi.org/10.1093/molbev/msw054KumarSStecherGTamuraKMEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasetsMol Biol Evol2016Jul33718701874https://doi.org/10.1093/molbev/msw05410.1093/molbev/msw054Search in Google Scholar
Li WJ, Chen HH, Kim CJ, Zhang YQ, Park DJ, Lee JC, Xu LH, Jiang CL. Nesterenkonia sandarakina sp. nov. and Nesterenkonia lutea sp. nov. novel actinobacteria, and emended description of the genus Nesterenkonia. Int J Syst Evol Microbiol. 2005 Jan;55(1):463–466. https://doi.org/10.1099/ijs.0.63281-0LiWJChenHHKimCJZhangYQParkDJLeeJCXuLHJiangCLNesterenkonia sandarakina spnov. and Nesterenkonia lutea sp. nov. novel actinobacteria, and emended description of the genus Nesterenkonia. Int J Syst Evol Microbiol2005Jan551463466https://doi.org/10.1099/ijs.0.63281-010.1099/ijs.0.63281-0Search in Google Scholar
Li WJ, Zhang YQ, Schumann P, Liu HY, Yu LY, Zhang YQ, Stackebrandt E, Xu LH, Jiang CL. Nesterenkonia halophila sp. nov. a moderately halophilic, alkalitolerant actinobacterium isolated from a saline soil. Int J Syst Evol Microbiol. 2008 Jun;58(6):1359–1363. https://doi.org/10.1099/ijs.0.64226-0LiWJZhangYQSchumannPLiuHYYuLYZhangYQStackebrandtEXuLHJiangCLNesterenkonia halophila spnov. a moderately halophilic, alkalitolerant actinobacterium isolated from a saline soil. Int J Syst Evol Microbiol2008Jun58613591363https://doi.org/10.1099/ijs.0.64226-010.1099/ijs.0.64226-0Search in Google Scholar
Liu GH, Narsing Rao MP, Dong ZY, Wang JP, Che JM, Chen QQ, Sengonca C, Liu B, Li WJ. Genome-based reclassification of Bacillus plakortidis Borchert et al. 2007 and Bacillus lehensis Ghosh et al. 2007 as a later heterotypic synonym of Bacillus oshimensis Yumoto et al. 2005; Bacillus rhizosphaerae Madhaiyan et al. 2011 as a later heterotypic synonym of Bacillus clausii Nielsen et al. 1995. Antonie Van Leeuwenhoek. 2019 Dec;112(12):1725–1730. https://doi.org/10.1007/s10482-019-01299-zLiuGHNarsingRao MPDongZYWangJPCheJMChenQQSengoncaCLiuBLiWJGenome-based reclassification of Bacillus plakortidis Borchert et al. 2007 and Bacillus lehensis Ghosh et al. 2007 as a later heterotypic synonym of Bacillus oshimensis Yumoto et al. 2005; Bacillus rhizosphaerae Madhaiyan et al. 2011 as a later heterotypic synonym of Bacillus clausii Nielsen et al. 1995Antonie Van Leeuwenhoek2019Dec1121217251730https://doi.org/10.1007/s10482-019-01299-z10.1007/s10482-019-01299-zSearch in Google Scholar
Lowe TM, Eddy SR. tRNAscan-SE: A program for improved detection of transfer rna genes in genomic sequence. Nucleic Acids Res. 1997 Mar; 25(5):955–964. https://doi.org/10.1093/nar/25.5.955LoweTMEddySRtRNAscan-SE: A program for improved detection of transfer rna genes in genomic sequenceNucleic Acids Res1997Mar255955964https://doi.org/10.1093/nar/25.5.95510.1093/nar/25.5.955Search in Google Scholar
Machin EV, Asem MD, Salam N, Iriarte A, Langleib M, Li WJ, Menes RJ. Nesterenkonia natronophila sp. nov. an alkaliphilic actinobacterium isolated from a soda lake, and emended description of the genus Nesterenkonia. Int J Syst Evol Microbiol. 2019 Jul;69(7): 1960–1966. https://doi.org/10.1099/ijsem.0.003409MachinEVAsemMDSalamNIriarteALangleibMLiWJMenesRJNesterenkonia natronophila spnov. an alkaliphilic actinobacterium isolated from a soda lake, and emended description of the genus Nesterenkonia. Int J Syst Evol Microbiol2019Jul69719601966https://doi.org/10.1099/ijsem.0.00340910.1099/ijsem.0.003409Search in Google Scholar
Martín J, da S Sousa T, Crespo G, Palomo S, González I, Tormo JR, de la Cruz M, Anderson M, Hill RT, Vicente F, et al. Kocurin, the true structure of PM181104, an anti-methicillin-resistant Staphylococcus aureus (MRSA) thiazolyl peptide from the marine-derived bacterium Kocuria palustris. Mar Drugs. 2013 Feb 4;11(2):387–398. https://doi.org/10.3390/md11020387MartínJda SSousa TCrespoGPalomoSGonzálezITormoJRde laCruz MAndersonMHillRTVicenteFet alKocurin, the true structure of PM181104, an anti-methicillin-resistant Staphylococcus aureus (MRSA) thiazolyl peptide from the marine-derived bacterium Kocuria palustrisMar Drugs2013Feb 4112387398https://doi.org/10.3390/md1102038710.3390/md11020387Search in Google Scholar
Martínez-Espinosa RM, Marhuenda-Egea FC, Bonete MJ. Assimilatory nitrate reductase from the haloarchaeon Haloferax mediterranei: purification and characterisation. FEMS Microbiol Lett. 2001 Nov 13;204(2):381–385. https://doi.org/10.1016/s0378-1097(01)00431-1Martínez-EspinosaRMMarhuenda-EgeaFCBoneteMJAssimilatory nitrate reductase from the haloarchaeon Haloferax mediterranei: purification and characterisationFEMS Microbiol Lett2001Nov 132042381385https://doi.org/10.1016/s0378-1097(01)00431-110.1016/S0378-1097(01)00431-1Search in Google Scholar
Mehta VJ, Thumar JT, Singh SP. Production of alkaline protease from an alkaliphilic actinomycete. Bioresour Technol. 2006 Sep; 97(14): 1650–1654. https://doi.org/10.1016/j.biortech.2005.07.023MehtaVJThumarJTSinghSPProduction of alkaline protease from an alkaliphilic actinomyceteBioresour Technol2006Sep971416501654https://doi.org/10.1016/j.biortech.2005.07.02310.1016/j.biortech.2005.07.02316203132Search in Google Scholar
Narsing Rao MP, Li YQ, Zhang H, Dong ZY, Dhulappa A, Xiao M, Li WJ. Amycolatopsis alkalitolerans sp. nov. isolated from Gastrodia elata Blume. J Antibiot (Tokyo). 2020 Jan;73(1):35–39. https://doi.org/10.1038/s41429-019-0222-8NarsingRao MPLiYQZhangHDongZYDhulappaAXiaoMLiWJAmycolatopsis alkalitolerans spnov. isolated from Gastrodia elata Blume. J Antibiot (Tokyo)2020Jan7313539https://doi.org/10.1038/s41429-019-0222-810.1038/s41429-019-0222-831434994Search in Google Scholar
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015 Jul; 25(7):1043–1055. https://doi.org/10.1101/gr.186072.114ParksDHImelfortMSkennertonCTHugenholtzPTysonGWCheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomesGenome Res2015Jul25710431055https://doi.org/10.1101/gr.186072.11410.14264/uql.2016.841Search in Google Scholar
Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol. 2020 Nov; 70(11):5607–5612. https://doi.org/10.1099/ijsem.0.004332ParteACSardàCarbasse JMeier-KolthoffJPReimerLCGökerMList of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZInt J Syst Evol Microbiol2020Nov701156075612https://doi.org/10.1099/ijsem.0.00433210.1099/ijsem.0.004332772325132701423Search in Google Scholar
Pastor JM, Salvador M, Argandoña M, Bernal V, Reina-Bueno M, Csonka LN, Iborra JL, Vargas C, Nieto JJ, Cánovas M. Ectoines in cell stress protection: Uses and biotechnological production. Biotechnol Adv. 2010 Nov-Dec;28(6):782–801. https://doi.org/10.1016/j.biotechadv.2010.06.005PastorJMSalvadorMArgandoñaMBernalVReina-BuenoMCsonkaLNIborraJLVargasCNietoJJCánovasMEctoines in cell stress protection: Uses and biotechnological productionBiotechnol Adv2010Nov-Dec286782801https://doi.org/10.1016/j.biotechadv.2010.06.00510.1016/j.biotechadv.2010.06.00520600783Search in Google Scholar
Patra T, Koley H, Ramamurthy T, Ghose AC, Nandy RK. The Entner-Doudoroff pathway is obligatory for gluconate utilization and contributes to the pathogenicity of Vibrio cholerae. J Bacteriol. 2012 Jul;194(13):3377–3385. https://doi.org/10.1128/JB.06379-11PatraTKoleyHRamamurthyTGhoseACNandyRKThe Entner-Doudoroff pathway is obligatory for gluconate utilization and contributes to the pathogenicity of Vibrio choleraeJ Bacteriol2012Jul1941333773385https://doi.org/10.1128/JB.06379-1110.1128/JB.06379-11343474022544275Search in Google Scholar
Prabhu DM, Quadri SR, Cheng J, Liu L, Chen W, Yang Y, Hozzein WN, Lingappa K, Li WJ. Sinomonas mesophila sp. nov. isolated from ancient fort soil. J Antibiot (Tokyo). 2015;68(5):318–321. https://doi.org/10.1038/ja.2014.161PrabhuDMQuadriSRChengJLiuLChenWYangYHozzeinWNLingappaKLiWJSinomonas mesophila spnov. isolated from ancient fort soil. J Antibiot (Tokyo)2015685318321https://doi.org/10.1038/ja.2014.16110.1038/ja.2014.16125464972Search in Google Scholar
Preiss L, Hicks DB, Suzuki S, Meier T, Krulwich TA. Alkaliphilic bacteria with impact on industrial applications, concepts of early life forms, and bioenergetics of ATP synthesis. Front Bioeng Biotechnol. 2015 Jun 3;3:75. https://doi.org/10.3389/fbioe.2015.00075PreissLHicksDBSuzukiSMeierTKrulwichTAAlkaliphilic bacteria with impact on industrial applications, concepts of early life forms, and bioenergetics of ATP synthesisFront Bioeng Biotechnol2015Jun 3375https://doi.org/10.3389/fbioe.2015.0007510.3389/fbioe.2015.00075445347726090360Search in Google Scholar
Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK.Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods. 2016 Nov; 8(1):12–24. https://doi.org/10.1039/C5AY02550HPritchardLGloverRHHumphrisSElphinstoneJGTothIKGenomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogensAnal Methods2016Nov811224https://doi.org/10.1039/C5AY02550H10.1039/C5AY02550HSearch in Google Scholar
Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA. 2009 Nov 10;106(45):19126–19131. https://doi.org/10.1073/pnas.0906412106RichterMRosselló-MóraRShifting the genomic gold standard for the prokaryotic species definitionProc Natl Acad Sci USA2009Nov 10106451912619131https://doi.org/10.1073/pnas.090641210610.1073/pnas.0906412106277642519855009Search in Google Scholar
Rytter H, Jamet A, Ziveri J, Ramond E, Coureuil M, Lagouge-Roussey P, Euphrasie D, Tros F, Goudin N, Chhuon C, et al. The pentose phosphate pathway constitutes a major metabolic hub in pathogenic Francisella. PLoS Pathog. 2021 Aug 2;17(8):e1009326. https://doi.org/10.1371/journal.ppat.1009326RytterHJametAZiveriJRamondECoureuilMLagouge-RousseyPEuphrasieDTrosFGoudinNChhuonCet alThe pentose phosphate pathway constitutes a major metabolic hub in pathogenic FrancisellaPLoS Pathog2021Aug 2178e1009326https://doi.org/10.1371/journal.ppat.100932610.1371/journal.ppat.1009326836058834339477Search in Google Scholar
Sadeghi A, Soltani BM, Nekouei MK, Jouzani GS, Mirzaei HH, Sadeghizadeh M. Diversity of the ectoines biosynthesis genes in the salt tolerant Streptomyces and evidence for inductive effect of ectoines on their accumulation. Microbiol Res. 2014 Sep-Oct; 169(9–10):699–708. https://doi.org/10.1016/j.micres.2014.02.005SadeghiASoltaniBMNekoueiMKJouzaniGSMirzaeiHHSadeghizadehMDiversity of the ectoines biosynthesis genes in the salt tolerant Streptomyces and evidence for inductive effect of ectoines on their accumulationMicrobiol Res2014Sep-Oct1699–10699708https://doi.org/10.1016/j.micres.2014.02.00510.1016/j.micres.2014.02.00524629523Search in Google Scholar
Sarethy IP, Saxena Y, Kapoor A, Sharma M, Sharma SK, Gupta V, Gupta S. Alkaliphilic bacteria: applications in industrial biotechnology. J Ind Microbiol Biotechnol. 2011 Jul;38(7):769–790. https://doi.org/10.1007/s10295-011-0968-xSarethyIPSaxenaYKapoorASharmaMSharmaSKGuptaVGuptaSAlkaliphilic bacteria: applications in industrial biotechnologyJ Ind Microbiol Biotechnol2011Jul387769790https://doi.org/10.1007/s10295-011-0968-x10.1007/s10295-011-0968-x21479938Search in Google Scholar
Shafiei M, Ziaee AA, Amoozegar MA. Purification and characterization of a halophilic α-amylase with increased activity in the presence of organic solvents from the moderately halophilic Nesterenkonia sp. strain F. Extremophiles. 2012 Jul;16(4):627–635. https://doi.org/10.1007/s00792-012-0462-zShafieiMZiaeeAAAmoozegarMAPurification and characterization of a halophilic α-amylase with increased activity in the presence of organic solvents from the moderately halophilic Nesterenkonia spstrain F. Extremophiles2012Jul164627635https://doi.org/10.1007/s00792-012-0462-z10.1007/s00792-012-0462-z22592324Search in Google Scholar
Shafiei M, Ziaee AA, Amoozegar MA. Purification and characterization of an organic-solvent-tolerant halophilic α-amylase from the moderately halophilic Nesterenkonia sp. strain F. J Ind Microbiol Biotechnol. 2011 Feb;38(2):275–281. https://doi.org/10.1007/s10295-010-0770-1ShafieiMZiaeeAAAmoozegarMAPurification and characterization of an organic-solvent-tolerant halophilic α-amylase from the moderately halophilic Nesterenkonia spstrain F. J Ind Microbiol Biotechnol2011Feb382275281https://doi.org/10.1007/s10295-010-0770-110.1007/s10295-010-0770-120593298Search in Google Scholar
Shivlata L, Satyanarayana T. Thermophilic and alkaliphilic Actino-bacteria: biology and potential applications. Front Microbiol. 2015 Sep 25;6:1014. https://doi.org/10.3389/fmicb.2015.01014ShivlataLSatyanarayanaTThermophilic and alkaliphilic Actino-bacteria: biology and potential applicationsFront Microbiol2015Sep 2561014https://doi.org/10.3389/fmicb.2015.0101410.3389/fmicb.2015.01014458525026441937Search in Google Scholar
Silver S, Walderhaug M. Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. Microbiol Rev. 1992 Mar;56(1):195–228. https://doi.org/10.1128/mr.56.1.195-228.1992SilverSWalderhaugMGene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteriaMicrobiol Rev1992Mar561195228https://doi.org/10.1128/mr.56.1.195-228.199210.1128/mr.56.1.195-228.19923728611579110Search in Google Scholar
Stackebrandt E, Koch C, Gvozdiak O, Schumann P. Taxonomic dissection of the genus MicrococcusKocuria gen. nov. Nesterenkonia gen. nov. Kytococcus gen. nov. Dermacoccus gen. nov. and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol. 1995;45(4):682–692. https://doi.org/10.1099/00207713-45-4-682StackebrandtEKochCGvozdiakOSchumannPTaxonomic dissection of the genus Micrococcus Kocuria gennov. Nesterenkonia gen. nov. Kytococcus gen. nov. Dermacoccus gen. nov. and Micrococcus Cohn1872gen. emend. Int J Syst Bacteriol. 1995454682692https://doi.org/10.1099/00207713-45-4-68210.1099/00207713-45-4-6827547287Search in Google Scholar
Taber WA. Evidence for the existence of acid-sensitive actinomycetes in soil. Can J Microbiol. 1960 Oct;6(5):534–544. https://doi.org/10.1139/m60-058TaberWAEvidence for the existence of acid-sensitive actinomycetes in soilCan J Microbiol1960Oct65534544https://doi.org/10.1139/m60-05810.1139/m60-058Search in Google Scholar
Thumar JT, Dhulia K, Singh SP. Isolation and partial purification of an antimicrobial agent from halotolerant alkaliphilic Streptomyces aburaviensis strain Kut-8. World J Microbiol Biotechnol. 2010 Mar; 26:2081–2087. https://doi.org/10.1007/s11274-010-0394-7ThumarJTDhuliaKSinghSPIsolation and partial purification of an antimicrobial agent from halotolerant alkaliphilic Streptomyces aburaviensis strain Kut-8World J Microbiol Biotechnol2010Mar2620812087https://doi.org/10.1007/s11274-010-0394-710.1007/s11274-010-0394-7Search in Google Scholar
van Dongen S, Abreu-Goodger C. Using MCL to extract clusters from networks. In: van Helden J, Toussaint A, Thieffry D, editors. Bacterial molecular networks. Methods in molecular biology, vol. 804. New York (USA): Springer; 2012. p. 281–295. https://doi.org/10.1007/978-1-61779-361-5_15vanDongen SAbreu-GoodgerCUsing MCL to extract clusters from networks. In: van Helden J, Toussaint A, Thieffry D, editors. Bacterial molecular networks. Methods in molecular biology, vol. 804New York (USA)Springer2012p281–295https://doi.org/10.1007/978-1-61779-361-5_1510.1007/978-1-61779-361-5_1522144159Search in Google Scholar
Wang HF, Zhang YG, Chen JY, Hozzein WN, Li L, Wadaan MAM, Zhang YM, Li WJ. Nesterenkonia rhizosphaerae sp. nov. an alkaliphilic actinobacterium isolated from rhizosphere soil in a saline-alkaline desert. Int J Syst Evol Microbiol. 2014 Dec;64(Pt_12):4021–4026. https://doi.org/10.1099/ijs.0.066894-0WangHFZhangYGChenJYHozzeinWNLiLWadaanMAMZhangYMLiWJNesterenkonia rhizosphaerae spnov. an alkaliphilic actinobacterium isolated from rhizosphere soil in a saline-alkaline desert. Int J Syst Evol Microbiol2014Dec64Pt_1240214026https://doi.org/10.1099/ijs.0.066894-010.1099/ijs.0.066894-025225260Search in Google Scholar
Wang S, Sun L, Wei D, Salam N, Fang BZ, Dong ZY, Hao XY, Zhang M, Zhang Z, Li WJ. Nesterenkonia haasae sp. nov. an alkaliphilic actinobacterium isolated from a degraded pasture in Songnen Plain. Arch Microbiol. 2021 Apr;203(3):959–966. https://doi.org/10.1007/s00203-020-02073-wWangSSunLWeiDSalamNFangBZDongZYHaoXYZhangMZhangZLiWJNesterenkonia haasae spnov. an alkaliphilic actinobacterium isolated from a degraded pasture in Songnen Plain. Arch Microbiol2021Apr2033959966https://doi.org/10.1007/s00203-020-02073-w10.1007/s00203-020-02073-w33104820Search in Google Scholar
Yaakop AS, Chan KG, Ee R, Lim YL, Lee SK, Manan FA, Goh KM. Characterization of the mechanism of prolonged adaptation to osmotic stress of Jeotgalibacillus malaysiensis via genome and transcriptome sequencing analyses. Sci Rep. 2016 Sep 19;6:33660. https://doi.org/10.1038/srep33660YaakopASChanKGEeRLimYLLeeSKMananFAGohKMCharacterization of the mechanism of prolonged adaptation to osmotic stress of Jeotgalibacillus malaysiensis via genome and transcriptome sequencing analysesSci Rep2016Sep 19633660https://doi.org/10.1038/srep3366010.1038/srep33660502756527641516Search in Google Scholar
Yoon JH, Jung SY, Kim W, Nam SW, Oh TK. Nesterenkonia jeotgali sp. nov. isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol. 2006 Nov;56(11):2587–2592. https://doi.org/10.1099/ijs.0.64266-0YoonJHJungSYKimWNamSWOhTKNesterenkonia jeotgali spnov. isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol2006Nov561125872592https://doi.org/10.1099/ijs.0.64266-010.1099/ijs.0.64266-017082396Search in Google Scholar
Zheng Z, Gao S, He Y, Li Z, Li Y, Cai X, Gu W, Wang G. The enhancement of the oxidative pentose phosphate pathway maybe involved in resolving imbalance between photosystem I and II in Dunaliella salinaAlgal Res. 2017 Sep;26:402–408. https://doi.org/10.1016/j.algal.2017.07.024ZhengZGaoSHeYLiZLiYCaiXGuWWangGThe enhancement of the oxidative pentose phosphate pathway maybe involved in resolving imbalance between photosystem I and II in Dunaliella salinaAlgal Res2017Sep26402408https://doi.org/10.1016/j.algal.2017.07.02410.1016/j.algal.2017.07.024Search in Google Scholar
Zhu D, Liu J, Han R, Shen G, Long Q, Wei X, Liu D. Identification and characterization of ectoine biosynthesis genes and heterologous expression of the ectABC gene cluster from Halomonas sp. QHL1, a moderately halophilic bacterium isolated from Qinghai Lake. J Microbiol. 2014 Feb;52(2):139–147. https://doi.org/10.1007/s12275-014-3389-5ZhuDLiuJHanRShenGLongQWeiXLiuDIdentification and characterization of ectoine biosynthesis genes and heterologous expression of the ectABC gene cluster from Halomonas spQHL1, a moderately halophilic bacterium isolated from Qinghai Lake. J Microbiol2014Feb522139147https://doi.org/10.1007/s12275-014-3389-510.1007/s12275-014-3389-524500478Search in Google Scholar