Open Access

Impact of Primary and Secondary Bile Acids on Clostridioides difficile Infection


Cite

Abt MC, McKenney PT, Pamer EG. Clostridium difficile colitis: pathogenesis and host defence. Nat Rev Microbiol. 2016 Oct; 14(10): 609–620. https://doi.org/10.1038/nrmicro.2016.108 AbtMC McKenneyPT PamerEG Clostridium difficile colitis: pathogenesis and host defence Nat Rev Microbiol 2016 Oct 14 10 609 620 https://doi.org/10.1038/nrmicro.2016.108 10.1038/nrmicro.2016.108510905427573580 Search in Google Scholar

Allegretti JR, Kearney S, Li N, Bogart E, Bullock K, Gerber GK, Bry L, Clish CB, Alm E, Korzenik JR. Recurrent Clostridium difficile infection associates with distinct bile acid and microbiome profiles. Aliment Pharmacol Ther. 2016 Jun;43(11):1142–1153. https://doi.org/10.1111/apt.13616 AllegrettiJR KearneyS LiN BogartE BullockK GerberGK BryL ClishCB AlmE KorzenikJR Recurrent Clostridium difficile infection associates with distinct bile acid and microbiome profiles Aliment Pharmacol Ther 2016 Jun 43 11 1142 1153 https://doi.org/10.1111/apt.13616 10.1111/apt.13616521457327086647 Search in Google Scholar

Babaknejad N, Nayeri H, Hemmati R, Bahrami S, Esmaillzadeh A. An overview of FGF19 and FGF21: the therapeutic role in the treatment of the metabolic disorders and obesity FGF19. Horm Metab Res. 2018 Jun;50(6):441–452. https://doi.org/10.1055/a-0623-2909 BabaknejadN NayeriH HemmatiR BahramiS EsmaillzadehA An overview of FGF19 and FGF21: the therapeutic role in the treatment of the metabolic disorders and obesity FGF19 Horm Metab Res 2018 Jun 50 6 441 452 https://doi.org/10.1055/a-0623-2909 10.1055/a-0623-290929883971 Search in Google Scholar

Bidault-Jourdainne V, Merlen G, Glénisson M, Doignon I, Garcin I, Péan N, Boisgard R, Ursic-Bedoya J, Serino M, Ullmer C, et al. TGR5 controls bile acid composition and gallbladder function to protect the liver from bile acid overload. JHEP Reports. 2021 Nov; 3(2):100214. https://doi.org/10.1016/j.jhepr.2020.100214 Bidault-JourdainneV MerlenG GlénissonM DoignonI GarcinI PéanN BoisgardR Ursic-BedoyaJ SerinoM UllmerC TGR5 controls bile acid composition and gallbladder function to protect the liver from bile acid overload JHEP Reports 2021 Nov 3 2 100214 https://doi.org/10.1016/j.jhepr.2020.100214 10.1016/j.jhepr.2020.100214787298233604531 Search in Google Scholar

Britton RA, Young VB. Role of the intestinal microbiota in resistance to colonization by Clostridium difficile. Gastroenterology. 2014 May; 146(6):1547–1553. https://doi.org/10.1053/j.gastro.2014.01.059 BrittonRA YoungVB Role of the intestinal microbiota in resistance to colonization by Clostridium difficile Gastroenterology 2014 May 146 6 1547 1553 https://doi.org/10.1053/j.gastro.2014.01.059 10.1053/j.gastro.2014.01.059399585724503131 Search in Google Scholar

Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, No D, Liu H, Kinnebrew M, Viale A, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 2015 Jan;517:205–208. https://doi.org/10.1038/nature13828 BuffieCG BucciV SteinRR McKenneyPT LingL GobourneA NoD LiuH KinnebrewM VialeA Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile Nature 2015 Jan 517 205 208 https://doi.org/10.1038/nature13828 10.1038/nature13828435489125337874 Search in Google Scholar

Cabrera D, Arab JP, Arrese M. UDCA, NorUDCA, and TUDCA in liver diseases: a review of their mechanisms of action and clinical applications. In: Fiorucci S, Distrutti E, editors. Bile acids and their receptors. Handbook of experimental pharmacology. Cham (Switzerland): Springer; 2019(256). p. 237–264. https://doi.org/10.1007/164_2019_241 CabreraD ArabJP ArreseM UDCA, NorUDCA, and TUDCA in liver diseases: a review of their mechanisms of action and clinical applications. In: Fiorucci S, Distrutti E, editors. Bile acids and their receptors Handbook of experimental pharmacology Cham (Switzerland) Springer 2019 (256). 237 264 https://doi.org/10.1007/164_2019_241 10.1007/164_2019_24131236688 Search in Google Scholar

Chiang JYL, Ferrell JM. Bile acids as metabolic regulators and nutrient sensors. Annu Rev Nutr. 2019 Aug;39:175–200. https://doi.org/10.1146/annurev-nutr-082018-124344 ChiangJYL FerrellJM Bile acids as metabolic regulators and nutrient sensors Annu Rev Nutr 2019 Aug 39 175 200 https://doi.org/10.1146/annurev-nutr-082018-124344 10.1146/annurev-nutr-082018-124344699608931018107 Search in Google Scholar

Czepiel J, Dróżdż M, Pituch H, Kuijper EJ, Perucki W, Mielimonka A, Goldman S, Wultańska D, Garlicki A, Biesiada G. Clostridium difficile infection: review. Eur J Clin Microbiol Infect Dis. 2019 Jul;38(7):1211–1221. https://doi.org/10.1007/s10096-019-03539-6 CzepielJ DróżdżM PituchH KuijperEJ PeruckiW MielimonkaA GoldmanS WultańskaD GarlickiA BiesiadaG Clostridium difficile infection: review Eur J Clin Microbiol Infect Dis 2019 Jul 38 7 1211 1221 https://doi.org/10.1007/s10096-019-03539-6 10.1007/s10096-019-03539-6657066530945014 Search in Google Scholar

Dawson PA, Karpen SJ. Intestinal transport and metabolism of bile acids. J Lipid Res. 2015 Jun;56(6):1085–1099. https://doi.org/10.1194/jlr.R054114 DawsonPA KarpenSJ Intestinal transport and metabolism of bile acids J Lipid Res 2015 Jun 56 6 1085 1099 https://doi.org/10.1194/jlr.R054114 10.1194/jlr.R054114444286725210150 Search in Google Scholar

Di Gregorio MC, Cautela J, Galantini L. Physiology and physical chemistry of bile acids. Int J Mol Sci. 2021 Feb;22(4):1780. https://doi.org/10.3390/ijms22041780 Di GregorioMC CautelaJ GalantiniL Physiology and physical chemistry of bile acids Int J Mol Sci 2021 Feb 22 4 1780 https://doi.org/10.3390/ijms22041780 10.3390/ijms22041780791680933579036 Search in Google Scholar

Duboc H, Taché Y, Hofmann AF. The bile acid TGR5 membrane receptor: from basic research to clinical application. Dig Liver Dis. 2014 Apr;46(4):302–312. https://doi.org/10.1016/j.dld.2013.10.021 DubocH TachéY HofmannAF The bile acid TGR5 membrane receptor: from basic research to clinical application Dig Liver Dis 2014 Apr 46 4 302 312 https://doi.org/10.1016/j.dld.2013.10.021 10.1016/j.dld.2013.10.021595319024411485 Search in Google Scholar

Ferrebee CB, Dawson PA. Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids. Acta Pharm Sin B. 2015 Mar;5(2):129–134. https://doi.org/10.1016/j.apsb.2015.01.001 FerrebeeCB DawsonPA Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids Acta Pharm Sin B 2015 Mar 5 2 129 134 https://doi.org/10.1016/j.apsb.2015.01.001 10.1016/j.apsb.2015.01.001462921426579438 Search in Google Scholar

Fiorucci S, Di Giorgio C, Distrutti E. Obeticholic acid: an update of its pharmacological activities in liver disorders. In: Fiorucci S, Distrutti E, editors. Bile acids and their receptors. Handbook of experimental pharmacology. Cham (Switzerland): Springer; 2019 (256). p. 283–295. https://doi.org/10.1007/164_2019_227 FiorucciS Di GiorgioC DistruttiE Obeticholic acid: an update of its pharmacological activities in liver disorders In: FiorucciS DistruttiE editors. Bile acids and their receptors Handbook of experimental pharmacology Cham (Switzerland) Springer 2019 (256). 283 295 https://doi.org/10.1007/164_2019_227 10.1007/164_2019_22731201552 Search in Google Scholar

Fiorucci S, Distrutti E. The pharmacology of bile acids and their receptors. In: Fiorucci S, Distrutti E, editors. Bile acids and their receptors. Handbook of experimental pharmacology. Cham (Switzerland): Springer; 2019(256). p. 3–18. https://doi.org/10.1007/164_2019_238 FiorucciS DistruttiE The pharmacology of bile acids and their receptors In: FiorucciS DistruttiE editors. Bile acids and their receptors Handbook of experimental pharmacology Cham (Switzerland) Springer 2019 (256). 3 18 https://doi.org/10.1007/164_2019_238 10.1007/164_2019_23831201555 Search in Google Scholar

Floreani A. Experimental pharmacological agents for the treatment of primary biliary cholangitis. J Exp Pharmacol. 2020 Dec;12: 643–652. https://doi.org/10.2147/JEP.S267375 FloreaniA Experimental pharmacological agents for the treatment of primary biliary cholangitis J Exp Pharmacol 2020 Dec 12 643 652 https://doi.org/10.2147/JEP.S267375 10.2147/JEP.S267375775171233364858 Search in Google Scholar

Foley MH, O’Flaherty S, Barrangou R, Theriot CM. Bile salt hydrolases: gatekeepers of bile acid metabolism and host-microbiome crosstalk in the gastrointestinal tract. PLoS Pathog. 2019 Mar;15(3):e1007581. https://doi.org/10.1371/journal.ppat.1007581 FoleyMH O’FlahertyS BarrangouR TheriotCM Bile salt hydrolases: gatekeepers of bile acid metabolism and host-microbiome crosstalk in the gastrointestinal tract PLoS Pathog 2019 Mar 15 3 e1007581 https://doi.org/10.1371/journal.ppat.1007581 10.1371/journal.ppat.1007581640504630845232 Search in Google Scholar

Gonzalez FJ, Jiang C, Bisson WH, Patterson AD. Inhibition of farnesoid X receptor signaling shows beneficial effects in human obesity. J Hepatol. 2015 Jun;62(6):1234–1236. https://doi.org/10.1016/j.jhep.2015.02.043 GonzalezFJ JiangC BissonWH PattersonAD Inhibition of farnesoid X receptor signaling shows beneficial effects in human obesity J Hepatol 2015 Jun 62 6 1234 1236 https://doi.org/10.1016/j.jhep.2015.02.043 10.1016/j.jhep.2015.02.043634626725747705 Search in Google Scholar

Guh AY, Mu Y, Winston LG, Johnston H, Olson D, Farley MM, Wilson LE, Holzbauer SM, Phipps EC, Dumyati GK, et al. Trends in U.S. Burden of Clostridioides difficile infection and outcomes. N Eng J Med. 2020 Apr;382(14):1320–1330. https://doi.org/10.1056/NEJMoa1910215 GuhAY MuY WinstonLG JohnstonH OlsonD FarleyMM WilsonLE HolzbauerSM PhippsEC DumyatiGK Trends in U.S. Burden of Clostridioides difficile infection and outcomes N Eng J Med 2020 Apr 382 14 1320 1330 https://doi.org/10.1056/NEJMoa1910215 10.1056/NEJMoa1910215786188232242357 Search in Google Scholar

Hashimoto S, Igimi H, Uchida K, Satoh T, Benno Y, Takeuchi N. Effects of β-lactam antibiotics on intestinal microflora and bile acid metabolism in rats. Lipids. 1996 Jun;31(6):601–609. https://doi.org/10.1007/BF02523830 HashimotoS IgimiH UchidaK SatohT BennoY TakeuchiN Effects of β-lactam antibiotics on intestinal microflora and bile acid metabolism in rats Lipids 1996 Jun 31 6 601 609 https://doi.org/10.1007/BF02523830 10.1007/BF025238308784740 Search in Google Scholar

Jose S, Mukherjee A, Horrigan O, Setchell KDR, Zhang W, Moreno-Fernandez ME, Andersen H, Sharma D, Haslam DB, Divanovic S, et al. Obeticholic acid ameliorates severity of Clostri dioides difficile infection in high fat diet-induced obese mice. Mucosal Immunol. 2021 Mar;14(2):500–510. https://doi.org/10.1038/s41385-020-00338-7 JoseS MukherjeeA HorriganO SetchellKDR ZhangW Moreno-FernandezME AndersenH SharmaD HaslamDB DivanovicS Obeticholic acid ameliorates severity of Clostri dioides difficile infection in high fat diet-induced obese mice Mucosal Immunol 2021 Mar 14 2 500 510 https://doi.org/10.1038/s41385-020-00338-7 10.1038/s41385-020-00338-7788974732811993 Search in Google Scholar

Kang JD, Myers CJ, Harris SC, Kakiyama G, Lee IK, Yun BS, Matsuzaki K, Furukawa M, Min HK, Bajaj JS, et al. Bile acid 7α-dehydroxylating gut gacteria secrete antibiotics that inhibit Clostridium difficile : role of secondary bile acids. Cell Chem Biol. 2019 Jan; 26(1):27–34.e4. https://doi.org/10.1016/j.chembiol.2018.10.003 KangJD MyersCJ HarrisSC KakiyamaG LeeIK YunBS MatsuzakiK FurukawaM MinHK BajajJS Bile acid 7α-dehydroxylating gut gacteria secrete antibiotics that inhibit Clostridium difficile : role of secondary bile acids Cell Chem Biol 2019 Jan 26 1 27 34.e4 https://doi.org/10.1016/j.chembiol.2018.10.003 10.1016/j.chembiol.2018.10.003633851430482679 Search in Google Scholar

Keith JW, Dong Q, Sorbara MT, Becattini S, Sia JK, Gjonbalaj M, Seok R, Leiner IM, Littmann ER, Pamer EG. Impact of antibiotic-resistant bacteria on immune activation and Clostridioides difficile infection in the mouse intestine. Infect Immun. 2020;88(4):e00362-19. https://doi.org/10.1128/IAI.00362-19 KeithJW DongQ SorbaraMT BecattiniS SiaJK GjonbalajM SeokR LeinerIM LittmannER PamerEG Impact of antibiotic-resistant bacteria on immune activation and Clostridioides difficile infection in the mouse intestine Infect Immun 2020 88 4 e00362-19 https://doi.org/10.1128/IAI.00362-19 10.1128/IAI.00362-19709314431907198 Search in Google Scholar

Kim DJ, Yoon S, Ji SC, Yang J, Kim YK, Lee S, Yu KS, Jang IJ, Chung JY, Cho JY. Ursodeoxycholic acid improves liver function via phenylalanine/tyrosine pathway and microbiome remodelling in patients with liver dysfunction. Sci Rep. 2018 Aug;8(1):11874. https://doi.org/10.1038/s41598-018-30349-1 KimDJ YoonS JiSC YangJ KimYK LeeS YuKS JangIJ ChungJY ChoJY Ursodeoxycholic acid improves liver function via phenylalanine/tyrosine pathway and microbiome remodelling in patients with liver dysfunction Sci Rep 2018 Aug 8 1 11874 https://doi.org/10.1038/s41598-018-30349-1 10.1038/s41598-018-30349-1608287930089798 Search in Google Scholar

Liu J, Lu H, Lu YF, Lei X, Cui JY, Ellis E, Strom SC, Klaassen CD. Potency of individual bile acids to regulate bile acid synthesis and transport genes in primary human hepatocyte cultures. Toxicol Sci. 2014 Oct;141(2):538–546. https://doi.org/10.1093/toxsci/kfu151 LiuJ LuH LuYF LeiX CuiJY EllisE StromSC KlaassenCD Potency of individual bile acids to regulate bile acid synthesis and transport genes in primary human hepatocyte cultures Toxicol Sci 2014 Oct 141 2 538 546 https://doi.org/10.1093/toxsci/kfu151 10.1093/toxsci/kfu151427105025055961 Search in Google Scholar

Mahida YR. New concepts in C. difficile management. Br Med Bull. 2019 Sep;131(1):109–118. https://doi.org/10.1093/bmb/ldz029 MahidaYR New concepts in C. difficile management Br Med Bull 2019 Sep 131 1 109 118 https://doi.org/10.1093/bmb/ldz029 10.1093/bmb/ldz02931583398 Search in Google Scholar

Marin JJG, Macias RIR, Briz O, Banales JM, Monte MJ. Bile acids in physiology, pathology and pharmacology. Curr Drug Metab. 2015; 17(1):4–29. https://doi.org/10.2174/1389200216666151103115454 MarinJJG MaciasRIR BrizO BanalesJM MonteMJ Bile acids in physiology, pathology and pharmacology Curr Drug Metab 2015 17 1 4 29 https://doi.org/10.2174/1389200216666151103115454 10.2174/138920021666615110311545426526836 Search in Google Scholar

Matsubara T, Li F, Gonzalez FJ. FXR signaling in the enterohepatic system. Mol Cell Endocrinol. 2013 Apr;368(1–2):17–29. https://doi.org/10.1016/j.mce.2012.05.004 MatsubaraT LiF GonzalezFJ FXR signaling in the enterohepatic system Mol Cell Endocrinol 2013 Apr 368 1–2 17 29 https://doi.org/10.1016/j.mce.2012.05.004 10.1016/j.mce.2012.05.004349114722609541 Search in Google Scholar

McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, Dubberke ER, Garey KW, Gould CV, Kelly C, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018 Mar;66(7):e1–e48. https://doi.org/10.1093/cid/cix1085 McDonaldLC GerdingDN JohnsonS BakkenJS CarrollKC CoffinSE DubberkeER GareyKW GouldCV KellyC Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA) Clin Infect Dis 2018 Mar 66 7 e1 e48 https://doi.org/10.1093/cid/cix1085 10.1093/cid/cix1085601898329462280 Search in Google Scholar

Mohandas S, Vairappan B. Role of pregnane X-receptor in regulating bacterial translocation in chronic liver diseases. World J Hepatol. 2017 Nov;9(32):1210–1226. https://doi.org/10.4254/wjh.v9.i32.1210 MohandasS VairappanB Role of pregnane X-receptor in regulating bacterial translocation in chronic liver diseases World J Hepatol 2017 Nov 9 32 1210 1226 https://doi.org/10.4254/wjh.v9.i32.1210 10.4254/wjh.v9.i32.1210569660429184608 Search in Google Scholar

Mulki R, Baumann AJ, Alnabelsi T, Sandhu N, Alhamshari Y, Wheeler DS, Perloff S, Katz PO. Body mass index greater than 35 is associated with severe Clostridium difficile infection. Aliment Pharmacol Ther. 2017 Jan;45(1):75–81. https://doi.org/10.1111/apt.13832 MulkiR BaumannAJ AlnabelsiT SandhuN AlhamshariY WheelerDS PerloffS KatzPO Body mass index greater than 35 is associated with severe Clostridium difficile infection Aliment Pharmacol Ther 2017 Jan 45 1 75 81 https://doi.org/10.1111/apt.13832 10.1111/apt.1383227790736 Search in Google Scholar

Mullish BH, Allegretti JR. The contribution of bile acid metabolism to the pathogenesis of Clostridioides difficile infection. Therap Adv Gastroenterol. 2021 May;14:17562848211017724. https://doi.org/10.1177/17562848211017725 MullishBH AllegrettiJR The contribution of bile acid metabolism to the pathogenesis of Clostridioides difficile infection Therap Adv Gastroenterol 2021 May 14 17562848211017724. https://doi.org/10.1177/17562848211017725 10.1177/17562848211017725816581534104212 Search in Google Scholar

Napolitano LM, Edmiston CE. Clostridium difficile disease: diagnosis, pathogenesis, and treatment update. Surgery. 2017 Aug; 162(2): 325–348. https://doi.org/10.1016/j.surg.2017.01.018 NapolitanoLM EdmistonCE Clostridium difficile disease: diagnosis, pathogenesis, and treatment update Surgery 2017 Aug 162 2 325 348 https://doi.org/10.1016/j.surg.2017.01.018 10.1016/j.surg.2017.01.01828267992 Search in Google Scholar

Novotny K, Hapshy V, Nguyen H, Parmar M. Obeticholic Acid. [Internet]. Treasure Island (USA): StatPearls Publishing; 2021 [cited 2021 Oct 11]. Available from https://www.ncbi.nlm.nih.gov/books/NBK567735/ NovotnyK HapshyV NguyenH ParmarM Obeticholic Acid. [Internet] Treasure Island (USA) StatPearls Publishing 2021 [cited 2021 Oct 11]. Available from https://www.ncbi.nlm.nih.gov/books/NBK567735/ Search in Google Scholar

Palmieri LJ, Rainteau D, Sokol H, Beaugerie L, Dior M, Coffin B, Humbert L, Eguether T, Bado A, Hoys S, et al. Inhibitory effect of ursodeoxycholic acid on Clostridium difficile germination is insufficient to prevent colitis: a study in hamsters and humans. Front Microbiol. 2018 Nov;9:2849. https://doi.org/10.3389/fmicb.2018.02849 PalmieriLJ RainteauD SokolH BeaugerieL DiorM CoffinB HumbertL EguetherT BadoA HoysS Inhibitory effect of ursodeoxycholic acid on Clostridium difficile germination is insufficient to prevent colitis: a study in hamsters and humans Front Microbiol 2018 Nov 9 2849 https://doi.org/10.3389/fmicb.2018.02849 10.3389/fmicb.2018.02849626207230524414 Search in Google Scholar

Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006 Feb;47(2):241–259. https://doi.org/10.1194/jlr.R500013-JLR200 RidlonJM KangDJ HylemonPB Bile salt biotransformations by human intestinal bacteria J Lipid Res 2006 Feb 47 2 241 259 https://doi.org/10.1194/jlr.R500013-JLR200 10.1194/jlr.R500013-JLR20016299351 Search in Google Scholar

Seekatz AM, Theriot CM, Rao K, Chang YM, Freeman AE, Kao JY, Young VB. Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection. Anaerobe. 2018 Feb; 53:64–73. https://doi.org/10.1016/j.anaerobe.2018.04.001 SeekatzAM TheriotCM RaoK ChangYM FreemanAE KaoJY YoungVB Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection Anaerobe 2018 Feb 53 64 73 https://doi.org/10.1016/j.anaerobe.2018.04.001 10.1016/j.anaerobe.2018.04.001618582829654837 Search in Google Scholar

Sehgal K, and Khanna S. Gut microbiome and Clostridioides difficile infection: a closer look at the microscopic interface. Therap Adv Gastroenterol. 2021 Feb;14:1–9. https://doi.org/10.1177/1756284821994736 SehgalK KhannaS Gut microbiome and Clostridioides difficile infection: a closer look at the microscopic interface Therap Adv Gastroenterol 2021 Feb 14 1 9 https://doi.org/10.1177/1756284821994736 10.1177/1756284821994736790571833747125 Search in Google Scholar

Sodum N, Kumar G, Bojja SL, Kumar N, Rao CM. Epigenetics in NAFLD/NASH: Targets and therapy. Pharmacol Res. 2021 May; 167:105484. https://doi.org/10.1016/j.phrs.2021.105484 SodumN KumarG BojjaSL KumarN RaoCM Epigenetics in NAFLD/NASH: Targets and therapy Pharmacol Res 2021 May 167 105484 https://doi.org/10.1016/j.phrs.2021.105484 10.1016/j.phrs.2021.10548433771699 Search in Google Scholar

Studer N, Desharnais L, Beutler M, Brugiroux S, Terrazos MA, Menin L, Schürch CM, McCoy KD, Kuehne SA, Minton NP, et al. Functional intestinal bile acid 7α-dehydroxylation by Clostridium scindens associated with protection from Clostridium difficile infection in a gnotobiotic mouse model. Front Cell Infect Microbiol. 2016 Dec;6:191. https://doi.org/10.3389/fcimb.2016.00191 StuderN DesharnaisL BeutlerM BrugirouxS TerrazosMA MeninL SchürchCM McCoyKD KuehneSA MintonNP Functional intestinal bile acid 7α-dehydroxylation by Clostridium scindens associated with protection from Clostridium difficile infection in a gnotobiotic mouse model Front Cell Infect Microbiol 2016 Dec 6 191 https://doi.org/10.3389/fcimb.2016.00191 10.3389/fcimb.2016.00191516857928066726 Search in Google Scholar

Thanissery R, Winston JA, Theriot CM. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids. Anaerobe. 2017 Jun;45:86–100. https://doi.org/10.1016/j.anaerobe.2017.03.004 ThanisseryR WinstonJA TheriotCM Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids Anaerobe 2017 Jun 45 86 100 https://doi.org/10.1016/j.anaerobe.2017.03.004 10.1016/j.anaerobe.2017.03.004546689328279860 Search in Google Scholar

Theriot CM, Bowman AA, Young VB. Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine. MSphere. 2016 Jan;1(1):e00045-15. https://doi.org/10.1128/msphere.00045-15 TheriotCM BowmanAA YoungVB Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine MSphere 2016 Jan 1 1 e00045-15 https://doi.org/10.1128/msphere.00045-15 10.1128/mSphere.00045-15486361127239562 Search in Google Scholar

Theriot CM, Koenigsknecht MJ, Carlson PE, Hatton GE, Nelson AM, Li B, Huffnagle GB, Li JZ, Young VB. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun. 2014 Jan;5:3114. https://doi.org/10.1038/ncomms4114 TheriotCM KoenigsknechtMJ CarlsonPE HattonGE NelsonAM LiB HuffnagleGB LiJZ YoungVB Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection Nat Commun 2014 Jan 5 3114 https://doi.org/10.1038/ncomms4114 10.1038/ncomms4114395027524445449 Search in Google Scholar

Theriot CM, Koumpouras C, Carlson PE, Bergin II, Aronoff DM, Young VB. Cefoperazone-treated mice as an experimental platform to assess differential virulence of Clostridium difficile strains. Gut Microbes. 2011 Nov–Dec;2(6):326–234. https://doi.org/10.4161/GMIC.19142 TheriotCM KoumpourasC CarlsonPE BerginII AronoffDM YoungVB Cefoperazone-treated mice as an experimental platform to assess differential virulence of Clostridium difficile strains Gut Microbes 2011 Nov–Dec 2 6 326 234 https://doi.org/10.4161/GMIC.19142 10.4161/gmic.19142333712122198617 Search in Google Scholar

Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal absorption of bile acids in health and disease. Compr Physiol. 2019 Dec;10(1):21–56. https://doi.org/10.1002/cphy.c190007 TichoAL MalhotraP DudejaPK GillRK AlrefaiWA Intestinal absorption of bile acids in health and disease Compr Physiol 2019 Dec 10 1 21 56 https://doi.org/10.1002/cphy.c190007 10.1002/cphy.c190007717192531853951 Search in Google Scholar

Webb BJ, Brunner A, Lewis J, Ford CD, Lopansri BK. Repurposing an old drug for a new epidemic: ursodeoxycholic acid to prevent recurrent Clostridioides difficile infection. Clin Infect Dis. 2019 Jan;68(3):498–500. https://doi.org/10.1093/cid/ciy568 WebbBJ BrunnerA LewisJ FordCD LopansriBK Repurposing an old drug for a new epidemic: ursodeoxycholic acid to prevent recurrent Clostridioides difficile infection Clin Infect Dis 2019 Jan 68 3 498 500 https://doi.org/10.1093/cid/ciy568 10.1093/cid/ciy56830020421 Search in Google Scholar

Wei M, Huang F, Zhao L, Zhang Y, Yang W, Wang S, Li M, Han X, Ge K, Qu C, et al. A dysregulated bile acid-gut microbiota axis contributes to obesity susceptibility. EBioMedicine. 2020 May; 55: 102766. https://doi.org/10.1016/j.ebiom.2020.102766 WeiM HuangF ZhaoL ZhangY YangW WangS LiM HanX GeK QuC A dysregulated bile acid-gut microbiota axis contributes to obesity susceptibility EBioMedicine 2020 May 55 102766 https://doi.org/10.1016/j.ebiom.2020.102766 10.1016/j.ebiom.2020.102766722561432408110 Search in Google Scholar

Weingarden AR, Chen C, Zhang N, Graiziger CT, Dosa PI, Steer CJ, Shaughnessy MK, Johnson JR, Sadowsky MJ, Khoruts A. Ursodeoxycholic acid inhibits Clostridium difficile spore germination and vegetative growth, and prevents the recurrence of ileal pouchitis associated with the infection. J Clin Gastroenterol. 2016a Sep;50(8):624–630. https://doi.org/10.1097/MCG.0000000000000427 WeingardenAR ChenC ZhangN GraizigerCT DosaPI SteerCJ ShaughnessyMK JohnsonJR SadowskyMJ KhorutsA Ursodeoxycholic acid inhibits Clostridium difficile spore germination and vegetative growth, and prevents the recurrence of ileal pouchitis associated with the infection J Clin Gastroenterol 2016a Sep 50 8 624 630 https://doi.org/10.1097/MCG.0000000000000427 10.1097/MCG.0000000000000427483428526485102 Search in Google Scholar

Weingarden AR, Dosa PI, DeWinter E, Steer CJ, Shaughnessy MK, Johnson JR, Khoruts A, Sadowsky MJ. Changes in colonic bile acid composition following fecal microbiota transplantation are sufficient to control Clostridium difficile germination and growth. PLoS One. 2016b Jan;11(1):e0147210. https://doi.org/10.1371/journal.pone.0147210 WeingardenAR DosaPI DeWinterE SteerCJ ShaughnessyMK JohnsonJR KhorutsA SadowskyMJ Changes in colonic bile acid composition following fecal microbiota transplantation are sufficient to control Clostridium difficile germination and growth PLoS One 2016b Jan 11 1 e0147210 https://doi.org/10.1371/journal.pone.0147210 10.1371/journal.pone.0147210472048126789728 Search in Google Scholar

Wells JE, Hylemon PB. Identification and characterization of a bile acid 7α-dehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7α-dehydroxylating strain isolated from human feces. Appl Environ Microbiol. 2000 Mar;66(3):1107–1113. https://doi.org/10.1128/AEM.66.3.1107-1113.2000 WellsJE HylemonPB Identification and characterization of a bile acid 7α-dehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7α-dehydroxylating strain isolated from human feces Appl Environ Microbiol 2000 Mar 66 3 1107 1113 https://doi.org/10.1128/AEM.66.3.1107-1113.2000 10.1128/AEM.66.3.1107-1113.20009194910698778 Search in Google Scholar

Winston JA, Rivera AJ, Cai J, Thanissery R, Montgomery SA, Patterson AD, Theriot CM. Ursodeoxycholic acid (UDCA) mitigates the host inflammatory response during Clostridioides difficile infection by altering gut bile acids. Infect Immun. 2020 May; 88(6): e00045-20. https://doi.org/10.1128/IAI.00045-20 WinstonJA RiveraAJ CaiJ ThanisseryR MontgomerySA PattersonAD TheriotCM Ursodeoxycholic acid (UDCA) mitigates the host inflammatory response during Clostridioides difficile infection by altering gut bile acids Infect Immun 2020 May 88 6 e00045-20 https://doi.org/10.1128/IAI.00045-20 10.1128/IAI.00045-20724009532205405 Search in Google Scholar

Winston JA, Theriot CM. Diversification of host bile acids by members of the gut microbiota. Gut Microbes. 2020 Oct;11(2):158–171. https://doi.org/10.1080/19490976.2019.1674124 WinstonJA TheriotCM Diversification of host bile acids by members of the gut microbiota Gut Microbes 2020 Oct 11 2 158 171 https://doi.org/10.1080/19490976.2019.1674124 10.1080/19490976.2019.1674124705388331595814 Search in Google Scholar

Winston JA, Theriot CM. Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract. Anaerobe. 2016 Oct;41:44–50. https://doi.org/10.1016/j.anaerobe.2016.05.003 WinstonJA TheriotCM Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract Anaerobe 2016 Oct 41 44 50 https://doi.org/10.1016/j.anaerobe.2016.05.003 10.1016/j.anaerobe.2016.05.003505008327163871 Search in Google Scholar

Xie C, Huang W, Young RL, Jones KL, Horowitz M, Rayner CK, Wu T. Role of bile acids in the regulation of food intake, and their dysregulation in metabolic disease. Nutrients. 2021 Mar;13(4):1104. https://doi.org/10.3390/nu13041104 XieC HuangW YoungRL JonesKL HorowitzM RaynerCK WuT Role of bile acids in the regulation of food intake, and their dysregulation in metabolic disease Nutrients 2021 Mar 13 4 1104 https://doi.org/10.3390/nu13041104 10.3390/nu13041104806618233800566 Search in Google Scholar

Zhang Y, LaCerte C, Kansra S, Jackson JP, Brouwer KR, Edwards JE. Comparative potency of obeticholic acid and natural bile acids on FXR in hepatic and intestinal in vitro cell models. Pharmacol Res Perspect. 2017 Dec;5(6):e00368. https://doi.org/10.1002/prp2.368 ZhangY LaCerteC KansraS JacksonJP BrouwerKR EdwardsJE Comparative potency of obeticholic acid and natural bile acids on FXR in hepatic and intestinal in vitro cell models Pharmacol Res Perspect 2017 Dec 5 6 e00368 https://doi.org/10.1002/prp2.368 10.1002/prp2.368572370129226620 Search in Google Scholar

eISSN:
2544-4646
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Microbiology and Virology