Open Access

Chemotaxis Toward Crude Oil by an Oil-Degrading Pseudomonas aeruginosa 6-1B Strain


Cite

Batista SB, Mounteer AH, Amorim FR, Tótola MR. Isolation and characterization of biosurfactant/bioemulsifier-producing bacteria from petroleum contaminated sites. Bioresour Technol. 2006 Apr;97(6):868–875. https://doi.org/10.1016/j.biortech.2005.04.020BatistaSBMounteerAHAmorimFRTótolaMR. Isolation and characterization of biosurfactant/bioemulsifier-producing bacteria from petroleum contaminated sites. Bioresour Technol.2006Apr;97(6):868875. https://doi.org/10.1016/j.biortech.2005.04.02010.1016/j.biortech.2005.04.020Search in Google Scholar

Boudko D, Yu HS, Ruiz M, Hou S, Alam M. A time-lapse capillary assay to study aerotaxis in the archaeon Halobacterium salinarum. J Microbiol Methods. 2003 Apr;53(1):123–126. https://doi.org/10.1016/s0167-7012(02)00227-0BoudkoDYuHSRuizMHouSAlamM. A time-lapse capillary assay to study aerotaxis in the archaeon Halobacterium salinarum. J Microbiol Methods.2003Apr;53(1):123126. https://doi.org/10.1016/s0167-7012(02)00227-010.1016/S0167-7012(02)00227-0Search in Google Scholar

Brown LR. Microbial enhanced oil recovery (MEOR). Curr Opin Microbiol. 2010 Jun;13(3):316–320. https://doi.org/10.1016/j.mib.2010.01.011BrownLR. Microbial enhanced oil recovery (MEOR). Curr Opin Microbiol.2010Jun;13(3):316320. https://doi.org/10.1016/j.mib.2010.01.01110.1016/j.mib.2010.01.011Search in Google Scholar

Bruinsma GM, van der Mei HC, Busscher HJ. Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Biomaterials. 2001 Dec;22(24):3217–3224. https://doi.org/10.1016/s0142-9612(01)00159-4BruinsmaGMvan der MeiHCBusscherHJ. Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Biomaterials.2001Dec;22(24):32173224. https://doi.org/10.1016/s0142-9612(01)00159-410.1016/S0142-9612(01)00159-4Search in Google Scholar

Dan L, Lei H, Guo-Qiang L, Zhao-Yu L, Ting M, Feng-Lai L, Ru-Lin L. [Study on the bioemulsifier produced by a hydrocarbon-degrading strain T7-2 and its physic-chemical properties] (In Chinese). Microbiol China. 2008;35(5):0653–0660.DanLLeiHGuo-QiangLZhao-YuLTingMFeng-LaiLRu-LinL. [Study on the bioemulsifier produced by a hydrocarbon-degrading strain T7-2 and its physic-chemical properties] (In Chinese). Microbiol China.2008;35(5):06530660.Search in Google Scholar

Gandhimathi R, Seghal Kiran G, Hema TA, Selvin J, Rajeetha Raviji T, Shanmughapriya S. Production and characterization of lipopeptide biosurfactant by a sponge-associated marine actinomycetes Nocardiopsis alba MSA10. Bioprocess Biosyst Eng. 2009 Oct; 32(6):825–835. https://doi.org/10.1007/s00449-009-0309-xGandhimathiRSeghal KiranGHemaTASelvinJRajeetha RavijiTShanmughapriyaS. Production and characterization of lipopeptide biosurfactant by a sponge-associated marine actinomycetes Nocardiopsis alba MSA10. Bioprocess Biosyst Eng.2009Oct; 32(6):825835. https://doi.org/10.1007/s00449-009-0309-x10.1007/s00449-009-0309-x19288138Search in Google Scholar

Gomes DLR, Peixoto RS, Barbosa EAB, Napoleão F, Sabbadini PS, Dos Santos KRN, Mattos-Guaraldi AL, Hirata R. Sub-MICs of penicillin and erythromycin enhance biofilm formation and hydrophobicity of Corynebacterium diphtheriae strains. J Med Microbiol. 2013 May;62(Pt 5):754–760. https://doi.org/10.1099/jmm.0.052373-0GomesDLRPeixotoRSBarbosaEABNapoleãoFSabbadiniPSDos SantosKRNMattos-GuaraldiALHirataR. Sub-MICs of penicillin and erythromycin enhance biofilm formation and hydrophobicity of Corynebacterium diphtheriae strains. J Med Microbiol.2013May;62(Pt 5):754760. https://doi.org/10.1099/jmm.0.052373-010.1099/jmm.0.052373-023449875Search in Google Scholar

Ha DG, Kuchma SL, O’Toole GA. Plate-based assay for swarming motility in Pseudomonas aeruginosa. Methods Mol Biol. 2014; 1149: 67–72. https://doi.org/10.1007/978-1-4939-0473-0_8HaDGKuchmaSLO’TooleGA. Plate-based assay for swarming motility in Pseudomonas aeruginosa. Methods Mol Biol.2014; 1149: 6772. https://doi.org/10.1007/978-1-4939-0473-0_810.1007/978-1-4939-0473-0_8900605224818898Search in Google Scholar

Head IM, Jones DM, Larter SR. Biological activity in the deep subsurface and the origin of heavy oil. Nature. 2003 Nov 20;426(6964): 344–352. https://doi.org/10.1038/nature02134HeadIMJonesDMLarterSR. Biological activity in the deep subsurface and the origin of heavy oil. Nature.2003Nov 20;426(6964): 344352. https://doi.org/10.1038/nature0213410.1038/nature0213414628064Search in Google Scholar

Huang L, Li D, Sun D, Xie YJ, Ma T, Liang FL, Liu RL. [Isolation and identification of a low temperature hydrocarbon-degrading strain and its degradation characteristics] (In Chinese). Huan Jing Ke Xue. 2007 Sep;28(9):2101–2105.HuangLLiDSunDXieYJMaTLiangFLLiuRL. [Isolation and identification of a low temperature hydrocarbon-degrading strain and its degradation characteristics] (In Chinese). Huan Jing Ke Xue.2007Sep;28(9):21012105.Search in Google Scholar

Kryachko Y. Novel approaches to microbial enhancement of oil recovery. J Biotechnol. 2018 Jan 20;266:118–123. https://doi.org/10.1016/j.jbiotec.2017.12.019KryachkoY. Novel approaches to microbial enhancement of oil recovery. J Biotechnol.2018Jan 20;266:118123. https://doi.org/10.1016/j.jbiotec.2017.12.01910.1016/j.jbiotec.2017.12.01929273562Search in Google Scholar

Lanfranconi MP, Alvarez HM, Studdert CA. A strain isolated from gas oil-contaminated soil displays chemotaxis towards gas oil and hexadecane. Environ Microbiol. 2003 Oct;5(10):1002–1008. https://doi.org/10.1046/j.1462-2920.2003.00507.xLanfranconiMPAlvarezHMStuddertCA. A strain isolated from gas oil-contaminated soil displays chemotaxis towards gas oil and hexadecane. Environ Microbiol.2003Oct;5(10):10021008. https://doi.org/10.1046/j.1462-2920.2003.00507.x10.1046/j.1462-2920.2003.00507.x14510854Search in Google Scholar

Law AM, Aitken MD. Bacterial chemotaxis to naphthalene desorbing from a nonaqueous liquid. Appl Environ Microbiol. 2003 Oct; 69(10):5968–5973. https://doi.org/10.1128/aem.69.10.5968-5973.2003LawAMAitkenMD. Bacterial chemotaxis to naphthalene desorbing from a nonaqueous liquid. Appl Environ Microbiol.2003Oct; 69(10):59685973. https://doi.org/10.1128/aem.69.10.5968-5973.200310.1128/AEM.69.10.5968-5973.2003Search in Google Scholar

Lee DW, Lee H, Kwon BO, Khim JS, Yim UH, Kim BS, Kim JJ. Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment. Environ Pollut. 2018 Oct;241:254–264. https://doi.org/10.1016/j.envpol.2018.05.070LeeDWLeeHKwonBOKhimJSYimUHKimBSKimJJ. Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment. Environ Pollut.2018Oct;241:254264. https://doi.org/10.1016/j.envpol.2018.05.07010.1016/j.envpol.2018.05.070Search in Google Scholar

Liu Y, Yang SF, Li Y, Xu H, Qin L, Tay JH. The influence of cell and substratum surface hydrophobicities on microbial attachment. J Biotechnol. 2004 Jun 10;110(3):251–256. https://doi.org/10.1016/j.jbiotec.2004.02.012LiuYYangSFLiYXuHQinLTayJH. The influence of cell and substratum surface hydrophobicities on microbial attachment. J Biotechnol.2004Jun 10;110(3):251256. https://doi.org/10.1016/j.jbiotec.2004.02.01210.1016/j.jbiotec.2004.02.012Search in Google Scholar

Marx RB, Aitken MD. Bacterial chemotaxis enhances naphthalene degradation in a heterogeneous aqueous system. Environ Sci Technol. 2000 Jul;34(16):3379–3383. https://doi.org/10.1021/es000904kMarxRBAitkenMD. Bacterial chemotaxis enhances naphthalene degradation in a heterogeneous aqueous system. Environ Sci Technol.2000Jul;34(16):33793383. https://doi.org/10.1021/es000904k10.1021/es000904kSearch in Google Scholar

Meng L, Li W, Bao M, Sun P. Great correlation: Biodegradation and chemotactic adsorption of Pseudomonas synxantha LSH-7’ for oil contaminated seawater bioremediation. Water Res. 2019 Apr 15;153: 160–168. https://doi.org/10.1016/j.watres.2019.01.021MengLLiWBaoMSunP. Great correlation: Biodegradation and chemotactic adsorption of Pseudomonas synxantha LSH-7’ for oil contaminated seawater bioremediation. Water Res.2019Apr 15;153: 160168. https://doi.org/10.1016/j.watres.2019.01.02110.1016/j.watres.2019.01.021Search in Google Scholar

Nakamura S, Minamino T. Flagella-driven motility of bacteria. Biomolecules. 2019 Jul 14;9(7):279. https://doi.org/10.3390/biom9070279NakamuraSMinaminoT. Flagella-driven motility of bacteria. Biomolecules.2019Jul 14;9(7):279. https://doi.org/10.3390/biom907027910.3390/biom9070279Search in Google Scholar

Ni B, Colin R, Link H, Endres RG, Sourjik V. Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis. Proc Natl Acad Sci USA. 2020 Jan 7;117(1):595–601. https://doi.org/10.1073/pnas.1910849117NiBColinRLinkHEndresRGSourjikV. Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis. Proc Natl Acad Sci USA.2020Jan 7;117(1):595601. https://doi.org/10.1073/pnas.191084911710.1073/pnas.1910849117Search in Google Scholar

Pandey G, Jain RK. Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol. 2002 Dec;68(12):5789–5795. https://doi.org/10.1128/aem.68.12.5789-5795.2002PandeyGJainRK. Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol.2002Dec;68(12):57895795. https://doi.org/10.1128/aem.68.12.5789-5795.200210.1128/AEM.68.12.5789-5795.2002Search in Google Scholar

Parales RE, Harwood CS. Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr Opin Microbiol. 2002 Jun; 5(3):266–273. https://doi.org/10.1016/s1369-5274(02)00320-xParalesREHarwoodCS. Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr Opin Microbiol.2002Jun; 5(3):266273. https://doi.org/10.1016/s1369-5274(02)00320-x10.1016/S1369-5274(02)00320-XSearch in Google Scholar

Patowary K, Patowary R, Kalita MC, Deka S. Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon. Front Microbiol. 2017 Feb 22;8:279. https://doi.org/10.3389/Fmicb.2017.00279PatowaryKPatowaryRKalitaMCDekaS. Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon. Front Microbiol.2017Feb 22;8:279. https://doi.org/10.3389/Fmicb.2017.0027910.3389/fmicb.2017.00279531998528275373Search in Google Scholar

Pedit JA, Marx RB, Miller CT, Aitken MD. Quantitative analysis of experiments on bacterial chemotaxis to naphthalene. Biotechnol Bioeng. 2002 Jun 20;78(6):626–634. https://doi.org/10.1002/bit.10244PeditJAMarxRBMillerCTAitkenMD. Quantitative analysis of experiments on bacterial chemotaxis to naphthalene. Biotechnol Bioeng.2002Jun 20;78(6):626634. https://doi.org/10.1002/bit.1024410.1002/bit.1024411992528Search in Google Scholar

Rocha VAL, de Castilho LVA, de Castro RPV, Teixeira DB, Magalhães AV, Gomez JGC, Freire DMG. Comparison of mono-rhamnolipids and di-rhamnolipids on microbial enhanced oil recovery (MEOR) applications. Biotechnol Prog. 2020 Jul;36(4):e2981. https://doi.org/10.1002/btpr.2981RochaVALde CastilhoLVAde CastroRPVTeixeiraDBMagalhãesAVGomezJGCFreireDMG. Comparison of mono-rhamnolipids and di-rhamnolipids on microbial enhanced oil recovery (MEOR) applications. Biotechnol Prog.2020Jul;36(4):e2981. https://doi.org/10.1002/btpr.298110.1002/btpr.298132083814Search in Google Scholar

Roggo C, Clerc EE, Hadadi N, Carraro N, Stocker R, van der Meer JR. Heterologous expression of Pseudomonas putida methyl-accepting chemotaxis proteins yields Escherichia coli cells chemotactic to aromatic compounds. Appl Environ Microbiol. 2018 Aug 31;84(18):e01362-18. https://doi.org/10.1128/AEM.01362-18RoggoCClercEEHadadiNCarraroNStockerRvan der MeerJR. Heterologous expression of Pseudomonas putida methyl-accepting chemotaxis proteins yields Escherichia coli cells chemotactic to aromatic compounds. Appl Environ Microbiol.2018Aug 31;84(18):e01362-18. https://doi.org/10.1128/AEM.01362-1810.1128/AEM.01362-18612198230006400Search in Google Scholar

Sampedro I, Parales RE, Krell T, Hill JE. Pseudomonas chemotaxis. FEMS Microbiol Rev. 2015 Jan;39(1):17–46. https://doi.org/10.1111/1574-6976.12081SampedroIParalesREKrellTHillJE. Pseudomonas chemotaxis. FEMS Microbiol Rev.2015Jan;39(1):1746. https://doi.org/10.1111/1574-6976.1208110.1111/1574-6976.1208125100612Search in Google Scholar

Vardar G, Barbieri P, Wood TK. Chemotaxis of Pseudomonas stutzeri OX1 and Burkholderia cepacia G4 toward chlorinated ethenes. Appl Microbiol Biotechnol. 2005 Mar;66(6):696–701. https://doi.org/10.1007/s00253-004-1685-4VardarGBarbieriPWoodTK. Chemotaxis of Pseudomonas stutzeri OX1 and Burkholderia cepacia G4 toward chlorinated ethenes. Appl Microbiol Biotechnol.2005Mar;66(6):696701. https://doi.org/10.1007/s00253-004-1685-410.1007/s00253-004-1685-415290136Search in Google Scholar

Waite AJ, Frankel NW, Emonet T. Behavioral variability and phenotypic diversity in bacterial chemotaxis. Annu Rev Biophys. 2018 May 20;47:595–616. https://doi.org/10.1146/annurev-biophys-062215-010954WaiteAJFrankelNWEmonetT. Behavioral variability and phenotypic diversity in bacterial chemotaxis. Annu Rev Biophys.2018May 20;47:595616. https://doi.org/10.1146/annurev-biophys-062215-01095410.1146/annurev-biophys-062215-010954598972129618219Search in Google Scholar

Yang J, Chawla R, Rhee KY, Gupta R, Manson MD, Jayaraman A, Lele PP. Biphasic chemotaxis of Escherichia coli to the microbiota metabolite indole. Proc Natl Acad Sci USA. 2020 Mar 17;117(11): 6114–6120. https://doi.org/10.1073/pnas.1916974117YangJChawlaRRheeKYGuptaRMansonMDJayaramanALelePP. Biphasic chemotaxis of Escherichia coli to the microbiota metabolite indole. Proc Natl Acad Sci USA.2020Mar 17;117(11): 61146120. https://doi.org/10.1073/pnas.191697411710.1073/pnas.1916974117708410132123098Search in Google Scholar

Zheng M, Wang W, Papadopoulos K. Direct visualization of oil degradation and biofilm formation for the screening of crude oil-degrading bacteria. Bioremediat J. 2020;24(1):60–70. https://doi.org/10.1080/10889868.2019.1671795ZhengMWangWPapadopoulosK. Direct visualization of oil degradation and biofilm formation for the screening of crude oil-degrading bacteria. Bioremediat J.2020;24(1):6070. https://doi.org/10.1080/10889868.2019.167179510.1080/10889868.2019.1671795Search in Google Scholar

Zita A, Hermansson M. Effects of bacterial cell surface structures and hydrophobicity on attachment to activated sludge flocs. Appl Environ Microbiol. 1997 Mar;63(3):1168–70. https://doi.org/10.1128/AEM.63.3.1168-1170.1997ZitaAHermanssonM. Effects of bacterial cell surface structures and hydrophobicity on attachment to activated sludge flocs. Appl Environ Microbiol.1997Mar;63(3):116870. https://doi.org/10.1128/AEM.63.3.1168-1170.199710.1128/aem.63.3.1168-1170.19971684089055433Search in Google Scholar

eISSN:
2544-4646
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Microbiology and Virology