Open Access

Antibiotic and Disinfectant Resistance in Tap Water Strains – Insight into the Resistance of Environmental Bacteria


Cite

Aber RC, Wennersten C, Moellering RC Jr. Antimicrobial susceptibility of flavobacteria. Antimicrob Agents Chemother. 1978 Sep 01;14(3):483–487. https://doi.org/10.1128/AAC.14.3.483AberRCWennerstenCMoelleringRCJr. Antimicrobial susceptibility of flavobacteria. Antimicrob Agents Chemother.1978Sep 01;14(3):483487. https://doi.org/10.1128/AAC.14.3.48310.1128/AAC.14.3.483352486708026Search in Google Scholar

Almuzara M, Limansky A, Ballerini V, Galanternik L, Famiglietti A, Vay C. In vitro susceptibility of Achromobacter spp. isolates: comparison of disk diffusion, Etest and agar dilution methods. Int J Antimicrob Agents. 2010 Jan;35(1):68–71. https://doi.org/10.1016/j.ijantimicag.2009.08.015AlmuzaraMLimanskyABalleriniVGalanternikLFamigliettiAVayC. In vitro susceptibility of Achromobacter spp. isolates: comparison of disk diffusion, Etest and agar dilution methods. Int J Antimicrob Agents.2010Jan;35(1):6871. https://doi.org/10.1016/j.ijantimicag.2009.08.01510.1016/j.ijantimicag.2009.08.01519889520Search in Google Scholar

Bai X, Ma X, Xu F, Li J, Zhang H, Xiao X. The drinking water treatment process as a potential source of affecting the bacterial antibiotic resistance. Sci Total Environ. 2015 Nov;533:24–31. https://doi.org/10.1016/j.scitotenv.2015.06.082BaiXMaXXuFLiJZhangHXiaoX. The drinking water treatment process as a potential source of affecting the bacterial antibiotic resistance. Sci Total Environ.2015Nov;533:2431. https://doi.org/10.1016/j.scitotenv.2015.06.08210.1016/j.scitotenv.2015.06.08226150304Search in Google Scholar

Baquero F, Martínez JL, Cantón R. Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol. 2008 Jun; 19(3):260–265. https://doi.org/10.1016/j.copbio.2008.05.006BaqueroFMartínezJLCantónR. Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol.2008Jun; 19(3):260265. https://doi.org/10.1016/j.copbio.2008.05.00610.1016/j.copbio.2008.05.00618534838Search in Google Scholar

Berglund B. Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infect Ecol Epidemiol. 2015 Jan;5(1):28564. https://doi.org/10.3402/iee.v5.28564BerglundB. Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infect Ecol Epidemiol.2015Jan;5(1):28564. https://doi.org/10.3402/iee.v5.2856410.3402/iee.v5.28564456506026356096Search in Google Scholar

Chen FL, Wang GC, Teng SO, Ou TY, Yu FL, Lee WS. Clinical and epidemiological features of Chryseobacterium indologenes infections: analysis of 215 cases. J Microbiol Immunol Infect. 2013b Dec;46(6):425–432. https://doi.org/10.1016/j.jmii.2012.08.007ChenFLWangGCTengSOOuTYYuFLLeeWS. Clinical and epidemiological features of Chryseobacterium indologenes infections: analysis of 215 cases. J Microbiol Immunol Infect.2013bDec;46(6):425432. https://doi.org/10.1016/j.jmii.2012.08.00710.1016/j.jmii.2012.08.00723022462Search in Google Scholar

Chen L, Jiang F, Xiao M, Dai J, Kan W, Fang C, Peng F. Dyadobacter arcticus sp. nov., isolated from Arctic soil. Int J Syst Evol Microbiol. 2013a May 01;63(Pt_5):1616–1620. https://doi.org/10.1099/ijs.0.044198-0ChenLJiangFXiaoMDaiJKanWFangCPengF. Dyadobacter arcticus sp. nov., isolated from Arctic soil. Int J Syst Evol Microbiol.2013aMay 01;63(Pt_5):16161620. https://doi.org/10.1099/ijs.0.044198-010.1099/ijs.0.044198-022904224Search in Google Scholar

Chiao TH, Clancy TM, Pinto A, Xi C, Raskin L. Differential resistance of drinking water bacterial populations to monochloramine disinfection. Environ Sci Technol. 2014 Apr;48(7):4038–4047. https://doi.org/10.1021/es4055725ChiaoTHClancyTMPintoAXiCRaskinL. Differential resistance of drinking water bacterial populations to monochloramine disinfection. Environ Sci Technol.2014Apr;48(7):40384047. https://doi.org/10.1021/es405572510.1021/es405572524625288Search in Google Scholar

ESAC-Net. [Internet]. European Surveillance of Antimicrobial Consumption Network; 2020 [cited 2020 Oct 12]. Available from https://www.ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/esac-netESAC-Net. [Internet]. European Surveillance of Antimicrobial Consumption Network; 2020[cited 2020 Oct 12]. Available from https://www.ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/esac-netSearch in Google Scholar

EUCAST. Växjö (Sweden): The European Committee on Antimicrobial Susceptibility Testing; 2020 [cited 2020 Oct 12]. Available from https://www.eucast.org/EUCAST. Växjö (Sweden): The European Committee on Antimicrobial Susceptibility Testing; 2020[cited 2020 Oct 12]. Available from https://www.eucast.org/Search in Google Scholar

Falagas ME, Karageorgopoulos DE. Pandrug resistance (PDR), extensive drug resistance (XDR), and multidrug resistance (MDR) among Gram-negative bacilli: need for international harmonization in terminology. Clin Infect Dis. 2008 Apr;46(7):1121–1122. https://doi.org/10.1086/528867FalagasMEKarageorgopoulosDE. Pandrug resistance (PDR), extensive drug resistance (XDR), and multidrug resistance (MDR) among Gram-negative bacilli: need for international harmonization in terminology. Clin Infect Dis.2008Apr;46(7):11211122. https://doi.org/10.1086/52886710.1086/52886718444833Search in Google Scholar

Falcone-Dias MF, Vaz-Moreira I, Manaia CM. Bottled mineral water as a potential source of antibiotic resistant bacteria. Water Res. 2012 Jul;46(11):3612–3622. https://doi.org/10.1016/j.watres.2012.04.007Falcone-DiasMFVaz-MoreiraIManaiaCM. Bottled mineral water as a potential source of antibiotic resistant bacteria. Water Res.2012Jul;46(11):36123622. https://doi.org/10.1016/j.watres.2012.04.00710.1016/j.watres.2012.04.00722534119Search in Google Scholar

Figueira V, Serra EA, Vaz-Moreira I, Brandão TRS, Manaia CM. Comparison of ubiquitous antibiotic-resistant Enterobacteriaceae populations isolated from wastewaters, surface waters and drinking waters. J Water Health. 2012 Mar 01;10(1):1–10. https://doi.org/10.2166/wh.2011.002FigueiraVSerraEAVaz-MoreiraIBrandãoTRSManaiaCM. Comparison of ubiquitous antibiotic-resistant Enterobacteriaceae populations isolated from wastewaters, surface waters and drinking waters. J Water Health.2012Mar 01;10(1):110. https://doi.org/10.2166/wh.2011.00210.2166/wh.2011.00222361697Search in Google Scholar

Flores Ribeiro A, Bodilis J, Alonso L, Buquet S, Feuilloley M, Dupont JP, Pawlak B. Occurrence of multi-antibiotic resistant Pseudomonas spp. in drinking water produced from karstic hydrosystems. Sci Total Environ. 2014 Aug;490:370–378. https://doi.org/10.1016/j.scitotenv.2014.05.012Flores RibeiroABodilisJAlonsoLBuquetSFeuilloleyMDupontJPPawlakB. Occurrence of multi-antibiotic resistant Pseudomonas spp. in drinking water produced from karstic hydrosystems. Sci Total Environ.2014Aug;490:370378. https://doi.org/10.1016/j.scitotenv.2014.05.01210.1016/j.scitotenv.2014.05.01224875257Search in Google Scholar

Furuhata K, Kato Y, Goto K, Hara M, Yoshida S, Fukuyama M. Isolation and identification of Methylobacterium species from the tap water in hospitals in Japan and their antibiotic susceptibility. Microbiol Immunol. 2006 Jan;50(1):11–17. https://doi.org/10.1111/j.1348-0421.2006.tb03765.xFuruhataKKatoYGotoKHaraMYoshidaSFukuyamaM. Isolation and identification of Methylobacterium species from the tap water in hospitals in Japan and their antibiotic susceptibility. Microbiol Immunol.2006Jan;50(1):1117. https://doi.org/10.1111/j.1348-0421.2006.tb03765.x10.1111/j.1348-0421.2006.tb03765.x16428868Search in Google Scholar

Furuhata K, Kato Y, Goto K, Saitou K, Sugiyama JI, Hara M, Fukuyama M. Identification of yellow-pigmented bacteria isolated from hospital tap water in Japan and their chlorine resistance. Biocontrol Sci. 2007;12(2):39–46. https://doi.org/10.4265/bio.12.39FuruhataKKatoYGotoKSaitouKSugiyamaJIHaraMFukuyamaM. Identification of yellow-pigmented bacteria isolated from hospital tap water in Japan and their chlorine resistance. Biocontrol Sci.2007;12(2):3946. https://doi.org/10.4265/bio.12.3910.4265/bio.12.3917629244Search in Google Scholar

Gneiding K, Frodl R, Funke G; Encountered in Human Clinical Specimens. Identities of Microbacterium spp. encountered in human clinical specimens. J Clin Microbiol. 2008 Nov 01;46(11):3646–3652. https://doi.org/10.1128/JCM.01202-08GneidingKFrodlRFunkeG; Encountered in Human Clinical Specimens. Identities of Microbacterium spp. encountered in human clinical specimens. J Clin Microbiol.2008Nov 01;46(11):36463652. https://doi.org/10.1128/JCM.01202-0810.1128/JCM.01202-08257659018799696Search in Google Scholar

Hashemi-Shahraki A, Heidarieh P, Bostanabad SZ, Hashemzadeh M, Feizabadi MM, Schraufnagel D, Mirsaeidi M. Genetic diversity and antimicrobial susceptibility of Nocardia species among patients with nocardiosis. Sci Rep. 2015 Dec;5(1):17862. https://doi.org/10.1038/srep17862Hashemi-ShahrakiAHeidariehPBostanabadSZHashemzadehMFeizabadiMMSchraufnagelDMirsaeidiM. Genetic diversity and antimicrobial susceptibility of Nocardia species among patients with nocardiosis. Sci Rep.2015Dec;5(1):17862. https://doi.org/10.1038/srep1786210.1038/srep17862467109526638771Search in Google Scholar

Hiraishi A, Furuhata K, Matsumoto A, Koike KA, Fukuyama M, Tabuchi K. Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments. Appl Environ Microbiol. 1995;61(6):2099–2107. https://doi.org/10.1128/AEM.61.6.2099-2107.1995HiraishiAFuruhataKMatsumotoAKoikeKAFukuyamaMTabuchiK. Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments. Appl Environ Microbiol.1995;61(6):20992107. https://doi.org/10.1128/AEM.61.6.2099-2107.199510.1128/aem.61.6.2099-2107.19951674827793931Search in Google Scholar

Khan H, Miao X, Liu M, Ahmad S, Bai X. Behavior of last resort antibiotic resistance genes (mcr-1 and blaNDM-1) in a drinking water supply system and their possible acquisition by the mouse gut flora. Environ Pollut. 2020 Apr;259:113818. https://doi.org/10.1016/j.envpol.2019.113818KhanHMiaoXLiuMAhmadSBaiX. Behavior of last resort antibiotic resistance genes (mcr-1 and blaNDM-1) in a drinking water supply system and their possible acquisition by the mouse gut flora. Environ Pollut.2020Apr;259:113818. https://doi.org/10.1016/j.envpol.2019.11381810.1016/j.envpol.2019.11381831896482Search in Google Scholar

Khan S, Beattie TK, Knapp CW. Relationship between antibiotic- and disinfectant-resistance profiles in bacteria harvested from tap water. Chemosphere. 2016a Jun;152:132–141. https://doi.org/10.1016/j.chemosphere.2016.02.086KhanSBeattieTKKnappCW. Relationship between antibiotic- and disinfectant-resistance profiles in bacteria harvested from tap water. Chemosphere.2016aJun;152:132141. https://doi.org/10.1016/j.chemosphere.2016.02.08610.1016/j.chemosphere.2016.02.08626966812Search in Google Scholar

Khan S, Knapp CW, Beattie TK. Antibiotic resistant bacteria found in municipal drinking water. Environ Process. 2016b Sep;3(3):541–552. https://doi.org/10.1007/s40710-016-0149-zKhanSKnappCWBeattieTK. Antibiotic resistant bacteria found in municipal drinking water. Environ Process.2016bSep;3(3):541552. https://doi.org/10.1007/s40710-016-0149-z10.1007/s40710-016-0149-zSearch in Google Scholar

Kim DJ, King JA, Zuccarelli L, Ferris CF, Koppel GA, Snowdon CT, Ahn CH. Clavulanic acid: A competitive inhibitor of beta-lactamases with novel anxiolytic-like activity and minimal side effects. Pharmacol Biochem Behav. 2009 Aug;93(2):112–120. https://doi.org/10.1016/j.pbb.2009.04.013KimDJKingJAZuccarelliLFerrisCFKoppelGASnowdonCTAhnCH. Clavulanic acid: A competitive inhibitor of beta-lactamases with novel anxiolytic-like activity and minimal side effects. Pharmacol Biochem Behav.2009Aug;93(2):112120. https://doi.org/10.1016/j.pbb.2009.04.01310.1016/j.pbb.2009.04.01319394358Search in Google Scholar

Kirby JT, Sader HS, Walsh TR, Jones RN. Antimicrobial susceptibility and epidemiology of a worldwide collection of Chryseobacterium spp.: report from the SENTRY Antimicrobial Surveillance Program (1997–2001). J Clin Microbiol. 2004 Jan 01;42(1):445–448. https://doi.org/10.1128/JCM.42.1.445-448.2004KirbyJTSaderHSWalshTRJonesRN. Antimicrobial susceptibility and epidemiology of a worldwide collection of Chryseobacterium spp.: report from the SENTRY Antimicrobial Surveillance Program (1997–2001). J Clin Microbiol.2004Jan 01;42(1):445448. https://doi.org/10.1128/JCM.42.1.445-448.200410.1128/JCM.42.1.445-448.200432171314715802Search in Google Scholar

Kumari H, Gupta SK, Jindal S, Katoch P, Lal R. Sphingobium lactosutens sp. nov., isolated from a hexachlorocyclohexane dump site and Sphingobium abikonense sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol. 2009 Sep 01;59(9):2291–2296. https://doi.org/10.1099/ijs.0.004739-0KumariHGuptaSKJindalSKatochPLalR. Sphingobium lactosutens sp. nov., isolated from a hexachlorocyclohexane dump site and Sphingobium abikonense sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol.2009Sep 01;59(9):22912296. https://doi.org/10.1099/ijs.0.004739-010.1099/ijs.0.004739-019620380Search in Google Scholar

La Scola B, Mallet MN, Grimont PAD, Raoult D. Bosea eneae sp. nov., Bosea massiliensis sp. nov. and Bosea vestrisii sp. nov., isolated from hospital water supplies, and emendation of the genus Bosea (Das et al. 1996). Int J Syst Evol Microbiol. 2003 Jan 01;53(1):15–20. https://doi.org/10.1099/ijs.0.02127-0La ScolaBMalletMNGrimontPADRaoultD. Bosea eneae sp. nov., Bosea massiliensis sp. nov. and Bosea vestrisii sp. nov., isolated from hospital water supplies, and emendation of the genus Bosea (Das et al. 1996). Int J Syst Evol Microbiol.2003Jan 01;53(1):1520. https://doi.org/10.1099/ijs.0.02127-010.1099/ijs.0.02127-012656146Search in Google Scholar

Leginowicz M, Siedlecka A, Piekarska K. Biodiversity and antibiotic resistance of bacteria isolated from tap water in Wrocław, Poland. Environ Prot Eng. 2018;44(4):85–98. https://doi.org/10.37190/epe180406LeginowiczMSiedleckaAPiekarskaK. Biodiversity and antibiotic resistance of bacteria isolated from tap water in Wrocław, Poland. Environ Prot Eng.2018;44(4):8598. https://doi.org/10.37190/epe18040610.37190/epe180406Search in Google Scholar

Lin W, Zhang M, Zhang S, Yu X. Can chlorination co-select antibiotic-resistance genes? Chemosphere. 2016 Aug;156:412–419. https://doi.org/10.1016/j.chemosphere.2016.04.139LinWZhangMZhangSYuX. Can chlorination co-select antibiotic-resistance genes?Chemosphere.2016Aug;156:412419. https://doi.org/10.1016/j.chemosphere.2016.04.13910.1016/j.chemosphere.2016.04.13927192478Search in Google Scholar

Liu Y, Lai Q, Du J, Shao Z. Bacillus zhangzhouensis sp. nov. and Bacillus australimaris sp. nov. Int J Syst Evol Microbiol. 2016 Mar 01;66(3):1193–1199. https://doi.org/10.1099/ijsem.0.000856LiuYLaiQDuJShaoZ. Bacillus zhangzhouensis sp. nov. and Bacillus australimaris sp. nov. Int J Syst Evol Microbiol.2016Mar 01;66(3):11931199. https://doi.org/10.1099/ijsem.0.00085610.1099/ijsem.0.00085626705002Search in Google Scholar

Loch TP, Faisal M. Emerging flavobacterial infections in fish: A review. J Adv Res. 2015 May;6(3):283–300. https://doi.org/10.1016/j.jare.2014.10.009LochTPFaisalM. Emerging flavobacterial infections in fish: A review. J Adv Res.2015May;6(3):283300. https://doi.org/10.1016/j.jare.2014.10.00910.1016/j.jare.2014.10.009452259326257926Search in Google Scholar

Ma L, Li B, Jiang XT, Wang YL, Xia Y, Li AD, Zhang T. Catalogue of antibiotic resistome and host-tracking in drinking water deciphered by a large scale survey. Microbiome. 2017 Dec;5(1):154. https://doi.org/10.1186/s40168-017-0369-0MaLLiBJiangXTWangYLXiaYLiADZhangT. Catalogue of antibiotic resistome and host-tracking in drinking water deciphered by a large scale survey. Microbiome.2017Dec;5(1):154. https://doi.org/10.1186/s40168-017-0369-010.1186/s40168-017-0369-0570457329179769Search in Google Scholar

Martinez JL. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc Biol Sci. 2009 Jul 22;276(1667):2521–2530. https://doi.org/10.1098/rspb.2009.0320MartinezJL. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc Biol Sci.2009Jul 22;276(1667):25212530. https://doi.org/10.1098/rspb.2009.032010.1098/rspb.2009.0320268466919364732Search in Google Scholar

Maurin M, Lepocher H, Mallet D, Raoult D. Antibiotic susceptibilities of Afipia felis in axenic medium and in cells. Antimicrob Agents Chemother. 1993 Jul 01;37(7):1410–1413. https://doi.org/10.1128/AAC.37.7.1410MaurinMLepocherHMalletDRaoultD. Antibiotic susceptibilities of Afipia felis in axenic medium and in cells. Antimicrob Agents Chemother.1993Jul 01;37(7):14101413. https://doi.org/10.1128/AAC.37.7.141010.1128/AAC.37.7.1410Search in Google Scholar

McTaggart LR, Doucet J, Witkowska M, Richardson SE. Antimicrobial susceptibility among clinical Nocardia species identified by multilocus sequence analysis. Antimicrob Agents Chemother. 2015 Jan;59(1):269–275. https://doi.org/10.1128/AAC.02770-14McTaggartLRDoucetJWitkowskaMRichardsonSE. Antimicrobial susceptibility among clinical Nocardia species identified by multilocus sequence analysis. Antimicrob Agents Chemother.2015Jan;59(1):269275. https://doi.org/10.1128/AAC.02770-1410.1128/AAC.02770-14Search in Google Scholar

Michel C, Matte-Tailliez O, Kerouault B, Bernardet JF. Resistance pattern and assessment of phenicol agents’ minimum inhibitory concentration in multiple drug resistant Chryseobacterium isolates from fish and aquatic habitats. J Appl Microbiol. 2005 Aug;99(2):323–332. https://doi.org/10.1111/j.1365-2672.2005.02592.xMichelCMatte-TailliezOKerouaultBBernardetJF. Resistance pattern and assessment of phenicol agents’ minimum inhibitory concentration in multiple drug resistant Chryseobacterium isolates from fish and aquatic habitats. J Appl Microbiol.2005Aug;99(2):323332. https://doi.org/10.1111/j.1365-2672.2005.02592.x10.1111/j.1365-2672.2005.02592.xSearch in Google Scholar

Narciso-da-Rocha C, Vaz-Moreira I, Manaia CM. Genotypic diversity and antibiotic resistance in Sphingomonadaceae isolated from hospital tap water. Sci Total Environ. 2014 Jan;466-467:127–135. https://doi.org/10.1016/j.scitotenv.2013.06.109Narciso-da-RochaCVaz-MoreiraIManaiaCM. Genotypic diversity and antibiotic resistance in Sphingomonadaceae isolated from hospital tap water. Sci Total Environ.2014Jan;466-467:127135. https://doi.org/10.1016/j.scitotenv.2013.06.10910.1016/j.scitotenv.2013.06.109Search in Google Scholar

Narciso-da-Rocha C, Vaz-Moreira I, Svensson-Stadler L, Moore ERB, Manaia CM. Diversity and antibiotic resistance of Acinetobacter spp. in water from the source to the tap. Appl Microbiol Biotechnol. 2013 Jan;97(1):329–340. https://doi.org/10.1007/s00253-012-4190-1Narciso-da-RochaCVaz-MoreiraISvensson-StadlerLMooreERBManaiaCM. Diversity and antibiotic resistance of Acinetobacter spp. in water from the source to the tap. Appl Microbiol Biotechnol.2013Jan;97(1):329340. https://doi.org/10.1007/s00253-012-4190-110.1007/s00253-012-4190-1Search in Google Scholar

Ogbonne FC, Osegbo AN, Nwokwu CP, Ukazu ER, Egbe FC, Akhiromen DI, Aguta OJ. Genotypic characterization and resistance patterns of Flavobacterium columnare from pond-cultured Clarias gariepinus. Middle East J Appl Sci Technol. 2019;2(1):54–61.OgbonneFCOsegboANNwokwuCPUkazuEREgbeFCAkhiromenDIAgutaOJ. Genotypic characterization and resistance patterns of Flavobacterium columnare from pond-cultured Clarias gariepinus. Middle East J Appl Sci Technol.2019;2(1):5461.Search in Google Scholar

Proctor CR, Hammes F. Drinking water microbiology – from measurement to management. Curr Opin Biotechnol. 2015 Jun;33:87–94. https://doi.org/10.1016/j.copbio.2014.12.014ProctorCRHammesF. Drinking water microbiology – from measurement to management. Curr Opin Biotechnol.2015Jun;33:8794. https://doi.org/10.1016/j.copbio.2014.12.01410.1016/j.copbio.2014.12.014Search in Google Scholar

Pruden A, Pei R, Storteboom H, Carlson KH. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environ Sci Technol. 2006 Dec;40(23):7445–7450. https://doi.org/10.1021/es060413lPrudenAPeiRStorteboomHCarlsonKH. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environ Sci Technol.2006Dec;40(23):74457450. https://doi.org/10.1021/es060413l10.1021/es060413lSearch in Google Scholar

Pruden A. Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance. Environ Sci Technol. 2014 Jan 07;48(1):5–14. https://doi.org/10.1021/es403883pPrudenA. Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance. Environ Sci Technol.2014Jan 07;48(1):514. https://doi.org/10.1021/es403883p10.1021/es403883pSearch in Google Scholar

Roberts SC, Zembower TR. Global increases in antibiotic consumption: a concerning trend for WHO targets. Lancet Infect Dis. 2021 Jan;21(1):10–11. https://doi.org/10.1016/S1473-3099(20)30456-4RobertsSCZembowerTR. Global increases in antibiotic consumption: a concerning trend for WHO targets. Lancet Infect Dis.2021Jan;21(1):1011. https://doi.org/10.1016/S1473-3099(20)30456-410.1016/S1473-3099(20)30456-4Search in Google Scholar

Ryan MP, Pembroke JT. Brevundimonas spp: emerging global opportunistic pathogens. Virulence. 2018 Dec 31;9(1):480–493. https://doi.org/10.1080/21505594.2017.1419116RyanMPPembrokeJT. Brevundimonas spp: emerging global opportunistic pathogens. Virulence.2018Dec 31;9(1):480493. https://doi.org/10.1080/21505594.2017.141911610.1080/21505594.2017.1419116595548329484917Search in Google Scholar

Salyers A, Gupta A, Wang Y. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol. 2004 Sep; 12(9):412–416. https://doi.org/10.1016/j.tim.2004.07.004SalyersAGuptaAWangY. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol.2004Sep; 12(9):412416. https://doi.org/10.1016/j.tim.2004.07.00410.1016/j.tim.2004.07.004Search in Google Scholar

Sanganyado E, Gwenzi W. Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks. Sci Total Environ. 2019 Jun;669:785–797. https://doi.org/10.1016/j.scitotenv.2019.03.162SanganyadoEGwenziW. Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks. Sci Total Environ.2019Jun;669:785797. https://doi.org/10.1016/j.scitotenv.2019.03.16210.1016/j.scitotenv.2019.03.162Search in Google Scholar

Saticioglu IB, Duman M, Smith P, Wiklund T, Altun S. Antimicrobial resistance and resistance genes in Flavobacterium psychrophilum isolates from Turkey. Aquaculture. 2019 Oct;512:734293. https://doi.org/10.1016/j.aquaculture.2019.734293SaticiogluIBDumanMSmithPWiklundTAltunS. Antimicrobial resistance and resistance genes in Flavobacterium psychrophilum isolates from Turkey. Aquaculture.2019Oct;512:734293. https://doi.org/10.1016/j.aquaculture.2019.73429310.1016/j.aquaculture.2019.734293Search in Google Scholar

Schlaberg R, Fisher MA, Hanson KE. Susceptibility profiles of Nocardia isolates based on current taxonomy. Antimicrob Agents Chemother. 2014 Feb;58(2):795–800. https://doi.org/10.1128/AAC.01531-13SchlabergRFisherMAHansonKE. Susceptibility profiles of Nocardia isolates based on current taxonomy. Antimicrob Agents Chemother.2014Feb;58(2):795800. https://doi.org/10.1128/AAC.01531-1310.1128/AAC.01531-13Search in Google Scholar

Senozan EA, Adams DJ, Giamanco NM, Warwick AB, Eberly MD. A catheter-related bloodstream infection with Mycobacterium frederiksbergense in an immunocompromised child. Pediatr Infect Dis J. 2015 Apr;34(4):445–447. https://doi.org/10.1097/INF.0000000000000563SenozanEAAdamsDJGiamancoNMWarwickABEberlyMD. A catheter-related bloodstream infection with Mycobacterium frederiksbergense in an immunocompromised child. Pediatr Infect Dis J.2015Apr;34(4):445447. https://doi.org/10.1097/INF.000000000000056310.1097/INF.0000000000000563Search in Google Scholar

Shi P, Jia S, Zhang XX, Zhang T, Cheng S, Li A. Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water. Water Res. 2013 Jan;47(1):111–120. https://doi.org/10.1016/j.watres.2012.09.046ShiPJiaSZhangXXZhangTChengSLiA. Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water. Water Res.2013Jan;47(1):111120. https://doi.org/10.1016/j.watres.2012.09.04610.1016/j.watres.2012.09.046Search in Google Scholar

Shrivastava R, Upreti RK, Jain SR, Prasad KN, Seth PK, Chaturvedi UC. Suboptimal chlorine treatment of drinking water leads to selection of multidrug-resistant Pseudomonas aeruginosa. Ecotoxicol Environ Saf. 2004 Jun;58(2):277–283. https://doi.org/10.1016/S0147-6513(03)00107-6ShrivastavaRUpretiRKJainSRPrasadKNSethPKChaturvediUC. Suboptimal chlorine treatment of drinking water leads to selection of multidrug-resistant Pseudomonas aeruginosa. Ecotoxicol Environ Saf.2004Jun;58(2):277283. https://doi.org/10.1016/S0147-6513(03)00107-610.1016/S0147-6513(03)00107-6Search in Google Scholar

Siedlecka A, Wolf-Baca M, Piekarska K. Spatiotemporal changes of antibiotic resistance and bacterial communities in drinking water distribution system in Wrocław, Poland. Water. 2020b Sep 17;12(9):2601. https://doi.org/10.3390/w12092601SiedleckaAWolf-BacaMPiekarskaK. Spatiotemporal changes of antibiotic resistance and bacterial communities in drinking water distribution system in Wrocław, Poland. Water.2020bSep 17;12(9):2601. https://doi.org/10.3390/w1209260110.3390/w12092601Search in Google Scholar

Siedlecka A, Wolf-Baca M, Pierkarska K. Seasonal variabilitiy of antibiotic resistance and biodiversity of tap water bacteria in Wrocław, Poland. Environ Prot Eng. 2020a;46(2):93–109. https://doi.org/10.37190/epe200207SiedleckaAWolf-BacaMPierkarskaK. Seasonal variabilitiy of antibiotic resistance and biodiversity of tap water bacteria in Wrocław, Poland. Environ Prot Eng.2020a;46(2):93109. https://doi.org/10.37190/epe20020710.37190/epe200207Search in Google Scholar

Stokes HW, Gillings MR. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol Rev. 2011 Sep;35(5):790–819. https://doi.org/10.1111/j.1574-6976.2011.00273.xStokesHWGillingsMR. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol Rev.2011Sep;35(5):790819. https://doi.org/10.1111/j.1574-6976.2011.00273.x10.1111/j.1574-6976.2011.00273.x21517914Search in Google Scholar

Tang Y, Dai J, Zhang L, Mo Z, Wang Y, Li Y, Ji S, Fang C, Zheng C. Dyadobacter alkalitolerans sp. nov., isolated from desert sand. Int J Syst Evol Microbiol. 2009 Jan 01;59(1):60–64. https://doi.org/10.1099/ijs.0.001404-0TangYDaiJZhangLMoZWangYLiYJiSFangCZhengC. Dyadobacter alkalitolerans sp. nov., isolated from desert sand. Int J Syst Evol Microbiol.2009Jan 01;59(1):6064. https://doi.org/10.1099/ijs.0.001404-010.1099/ijs.0.001404-019126724Search in Google Scholar

Vaz-Moreira I, Nunes OC, Manaia CM. Bacterial diversity and antibiotic resistance in water habitats: searching the links with the human microbiome. FEMS Microbiol Rev. 2014 Jul;38(4):761–778. https://doi.org/10.1111/1574-6976.12062Vaz-MoreiraINunesOCManaiaCM. Bacterial diversity and antibiotic resistance in water habitats: searching the links with the human microbiome. FEMS Microbiol Rev.2014Jul;38(4):761778. https://doi.org/10.1111/1574-6976.1206210.1111/1574-6976.1206224484530Search in Google Scholar

Vaz-Moreira I, Nunes OC, Manaia CM. Diversity and antibiotic resistance patterns of Sphingomonadaceae isolates from drinking water. Appl Environ Microbiol. 2011 Aug 15;77(16):5697–5706. https://doi.org/10.1128/AEM.00579-11Vaz-MoreiraINunesOCManaiaCM. Diversity and antibiotic resistance patterns of Sphingomonadaceae isolates from drinking water. Appl Environ Microbiol.2011Aug 15;77(16):56975706. https://doi.org/10.1128/AEM.00579-1110.1128/AEM.00579-11316524521705522Search in Google Scholar

Vaz-Moreira I, Nunes OC, Manaia CM. Diversity and antibiotic resistance in Pseudomonas spp. from drinking water. Sci Total Environ. 2012 Jun;426:366–374. https://doi.org/10.1016/j.scitotenv.2012.03.046Vaz-MoreiraINunesOCManaiaCM. Diversity and antibiotic resistance in Pseudomonas spp. from drinking water. Sci Total Environ.2012Jun;426:366374. https://doi.org/10.1016/j.scitotenv.2012.03.04610.1016/j.scitotenv.2012.03.04622521167Search in Google Scholar

Vaz-Moreira I, Nunes OC, Manaia CM. Ubiquitous and persistent Proteobacteria and other Gram-negative bacteria in drinking water. Sci Total Environ. 2017 May;586:1141–1149. https://doi.org/10.1016/j.scitotenv.2017.02.104Vaz-MoreiraINunesOCManaiaCM. Ubiquitous and persistent Proteobacteria and other Gram-negative bacteria in drinking water. Sci Total Environ.2017May;586:11411149. https://doi.org/10.1016/j.scitotenv.2017.02.10410.1016/j.scitotenv.2017.02.10428238372Search in Google Scholar

Viana AT, Caetano T, Covas C, Santos T, Mendo S. Environmental superbugs: the case study of Pedobacter spp. Environ Pollut. 2018 Oct;241:1048–1055. https://doi.org/10.1016/j.envpol.2018.06.047VianaATCaetanoTCovasCSantosTMendoS. Environmental superbugs: the case study of Pedobacter spp. Environ Pollut.2018Oct;241:10481055. https://doi.org/10.1016/j.envpol.2018.06.04710.1016/j.envpol.2018.06.04730029312Search in Google Scholar

Wang DY, Abboud MI, Markoulides MS, Brem J, Schofield CJ. The road to avibactam: the first clinically useful non-β-lactam working somewhat like a β-lactam. Future Med Chem. 2016 Jun;8(10): 1063–1084. https://doi.org/10.4155/fmc-2016-0078WangDYAbboudMIMarkoulidesMSBremJSchofieldCJ. The road to avibactam: the first clinically useful non-β-lactam working somewhat like a β-lactam. Future Med Chem.2016Jun;8(10): 10631084. https://doi.org/10.4155/fmc-2016-007810.4155/fmc-2016-007827327972Search in Google Scholar

Willumsen P, Karlson U, Stackebrandt E, Kroppenstedt RM. Mycobacterium frederiksbergense sp. nov., a novel polycyclic aromatic hydrocarbon-degrading Mycobacterium species. Int J Syst Evol Microbiol. 2001 Sep 01;51(5):1715–1722. https://doi.org/10.1099/00207713-51-5-1715WillumsenPKarlsonUStackebrandtEKroppenstedtRM. Mycobacterium frederiksbergense sp. nov., a novel polycyclic aromatic hydrocarbon-degrading Mycobacterium species. Int J Syst Evol Microbiol.2001Sep 01;51(5):17151722. https://doi.org/10.1099/00207713-51-5-171510.1099/00207713-51-5-171511594601Search in Google Scholar

Zhang P, Hozalski RM, Leach LH, Camper AK, Goslan EH, Parsons SA, Xie YF, LaPara TM. Isolation and characterization of haloacetic acid-degrading Afipia spp. from drinking water. FEMS Microbiol Lett. 2009 Aug;297(2):203–208. https://doi.org/10.1111/j.1574-6968.2009.01687.xZhangPHozalskiRMLeachLHCamperAKGoslanEHParsonsSAXieYFLaParaTM. Isolation and characterization of haloacetic acid-degrading Afipia spp. from drinking water. FEMS Microbiol Lett.2009Aug;297(2):203208. https://doi.org/10.1111/j.1574-6968.2009.01687.x10.1111/j.1574-6968.2009.01687.x19634207Search in Google Scholar

Zhang Y, Gu AZ, He M, Li D, Chen J. Subinhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across genera. Environ Sci Technol. 2017 Jan 03;51(1):570–580. https://doi.org/10.1021/acs.est.6b03132ZhangYGuAZHeMLiDChenJ. Subinhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across genera. Environ Sci Technol.2017Jan 03;51(1):570580. https://doi.org/10.1021/acs.est.6b0313210.1021/acs.est.6b0313227997135Search in Google Scholar

Zhao P, Zhang X, Du P, Li G, Li L, Li Z. Susceptibility profiles of Nocardia spp. to antimicrobial and antituberculotic agents detected by a microplate Alamar Blue assay. Sci Rep. 2017 May;7(1):43660. https://doi.org/10.1038/srep43660ZhaoPZhangXDuPLiGLiLLiZ. Susceptibility profiles of Nocardia spp. to antimicrobial and antituberculotic agents detected by a microplate Alamar Blue assay. Sci Rep.2017May;7(1):43660. https://doi.org/10.1038/srep4366010.1038/srep43660533362928252662Search in Google Scholar

eISSN:
2544-4646
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Microbiology and Virology