Cite

Afshari R, Hosseini H. Non-thermal plasma as a new food preservation method, its present and future prospect. J Paramed Sci. 2014;5:116–120.AfshariRHosseiniHNon-thermal plasma as a new food preservation method, its present and future prospect. J Paramed Sci. 2014;5:116120.Search in Google Scholar

Ahlfeld B, Li Y, Boulaaba A, Binder A, Schotte U, Zimmermann JL, Morfill G, Klein G. Inactivation of a foodborne norovirus outbreak strain with nonthermal atmospheric pressure plasma. MBio. 2015 Feb 27;6(1):e02300–e02314. doi:10.1128/mBio.02300-14 MedlineAhlfeldBLiYBoulaabaABinderASchotteUZimmermannJLMorfillGKleinGInactivation of a foodborne norovirus outbreak strain with nonthermal atmospheric pressure plasma. MBio. 2015Feb 27;6(1):e02300e02314. doi:10.1128/mBio.02300-14Medline431190725587014Open DOISearch in Google Scholar

Alkawareek MY, Alshraiedeh NH, Higginbotham S, Flynn PB, Algwari QT, Gorman SP, Graham WG, Gilmore BF. Plasmid DNA damage following exposure to atmospheric pressure nonthermal plasma: kinetics and influence of oxygen admixture. Plasma Med. 2014;4(1-4):211–219. doi:10.1615/PlasmaMed.2015011977AlkawareekMYAlshraiedehNHHigginbothamSFlynnPBAlgwariQTGormanSPGrahamWGGilmoreBFPlasmid DNA damage following exposure to atmospheric pressure nonthermal plasma: kinetics and influence of oxygen admixture. Plasma Med. 2014;4(1-4):211219. doi:10.1615/PlasmaMed.2015011977Open DOISearch in Google Scholar

Attri P, Han J, Choi S, Choi EH, Bogaerts A, Lee W. CAP modifies the structure of a model protein from thermophilic bacteria: mechanisms of CAP-mediated inactivation. Sci Rep. 2018 Dec; 8(1):10218. doi:10.1038/s41598-018-28600-w MedlineAttriPHanJChoiSChoiEHBogaertsALeeWCAP modifies the structure of a model protein from thermophilic bacteria: mechanisms of CAP-mediated inactivation. Sci Rep. 2018 Dec; 8(1):10218. doi:10.1038/s41598-018-28600-wMedline603386429977069Open DOISearch in Google Scholar

Bayliss DL, Walsh JL, Iza F, Shama G, Holah J, Kong MG. Complex responses of microorganisms as a community to a flowing atmospheric plasma. Plasma Process Polym. 2012 Jun;9(6):597–611. doi:10.1002/ppap.201100104BaylissDLWalshJLIzaFShamaGHolahJKongMGComplex responses of microorganisms as a community to a flowing atmospheric plasma. Plasma Process Polym. 2012Jun;9(6):597611. doi:10.1002/ppap.201100104Open DOISearch in Google Scholar

Beggs CB. A quantitative method for evaluating the photoreactivation of ultraviolet damaged microorganisms. Photochem Photobiol Sci. 2002 Jun 7;1(6):431–437. doi:10.1039/b202801h MedlineBeggsCBA quantitative method for evaluating the photoreactivation of ultraviolet damaged microorganisms. Photochem Photobiol Sci. 2002Jun 7;1(6):431437. doi:10.1039/b202801hMedline12856713Open DOISearch in Google Scholar

Bogaerts A, Neyts EC. Plasma technology: an emerging technology for energy storage. ACS Energy Lett. 2018 Apr 13;3(4):1013–1027. doi:10.1021/acsenergylett.8b00184BogaertsANeytsECPlasma technology: an emerging technology for energy storage. ACS Energy Lett. 2018Apr 13;3(4):10131027. doi:10.1021/acsenergylett.8b00184Open DOISearch in Google Scholar

Boudam MK, Moisan M. Synergy effect of heat and UV photons on bacterial-spore inactivation in an N2 –O2 plasma-afterglow sterilizer. J Phys D Appl Phys. 2010 Jul 28;43(29):295202. doi:10.1088/0022-3727/43/29/295202BoudamMKMoisanMSynergy effect of heat and UV photons on bacterial-spore inactivation in an N2 –O2 plasma-afterglow sterilizer. J Phys D Appl Phys. 2010Jul 28;43(29):295202. doi:10.1088/0022-3727/43/29/295202Open DOISearch in Google Scholar

Bourke P, Ziuzina D, Han L, Cullen PJ, Gilmore BF. Microbiological interactions with cold plasma. J Appl Microbiol. 2017 Aug;123(2):308–324. doi:10.1111/jam.13429 MedlineBourkePZiuzinaDHanLCullenPJGilmoreBFMicrobiological interactions with cold plasma. J Appl Microbiol. 2017Aug;123(2):308324. doi:10.1111/jam.13429Medline28245092Open DOISearch in Google Scholar

Boxhammer V, Li YF, Köritzer J, Shimizu T, Maisch T, Thomas HM, Schlegel J, Morfill GE, Zimmermann JL. Investigation of the muta genic potential of cold atmospheric plasma at bactericidal dosages. Mutat Res-Gen Tox En. 2013;753(1):23–28.BoxhammerVLiYFKöritzerJShimizuTMaischTThomasHMSchlegelJMorfillGEZimmermannJLInvestigation of the muta genic potential of cold atmospheric plasma at bactericidal dosages. Mutat Res-Gen Tox En. 2013;753(1):2328.10.1016/j.mrgentox.2012.12.01523416235Search in Google Scholar

Brisset JL, Pawłat J. Chemical effects of air plasma species on aqueous solutes in direct and delayed exposure modes: discharge, post-discharge and plasma activated water. Plasma Chem Plasma Process. 2016 Mar;36(2):355–381. doi:10.1007/s11090-015-9653-6BrissetJLPawłatJChemical effects of air plasma species on aqueous solutes in direct and delayed exposure modes: discharge, post-discharge and plasma activated water. Plasma Chem Plasma Process. 2016Mar;36(2):355381. doi:10.1007/s11090-015-9653-6Open DOISearch in Google Scholar

Bruggeman PJ, Kushner MJ, Locke BR, Gardeniers JGE, Graham WG, Graves DB, Hofman-Caris RCHM, Maric D, Reid JP, Ceriani E, et al. Plasma–liquid interactions: a review and roadmap. Plasma Sources Sci Technol. 2016 Sep 30;25(5):053002. doi:10.1088/0963-0252/25/5/053002BruggemanPJKushnerMJLockeBRGardeniersJGEGrahamWGGravesDBHofman-CarisRCHMMaricDReidJPCerianiEet alPlasma–liquid interactions: a review and roadmap. Plasma Sources Sci Technol. 2016Sep 30;25(5):053002. doi:10.1088/0963-0252/25/5/053002Open DOISearch in Google Scholar

Brun P, Bernabè G, Marchiori C, Scarpa M, Zuin M, Cavazzana R, Zaniol B, Martines E. Antibacterial efficacy and mechanisms of action of low power atmospheric pressure cold plasma: membrane permeability, biofilm penetration and antimicrobial sensitization. J Appl Microbiol. 2018 Aug;125(2):398–408. doi:10.1111/jam.13780 MedlineBrunPBernabèGMarchioriCScarpaMZuinMCavazzanaRZaniolBMartinesEAntibacterial efficacy and mechanisms of action of low power atmospheric pressure cold plasma: membrane permeability, biofilm penetration and antimicrobial sensitization. J Appl Microbiol. 2018Aug;125(2):398408. doi:10.1111/jam.13780Medline29655267Open DOISearch in Google Scholar

Chizoba Ekezie F-G, Sun DW, Cheng JH. A review on recent advances in cold plasma technology for the food industry: current applications and future trends. Trends Food Sci Technol. 2017 Nov; 69:46–58. doi:10.1016/j.tifs.2017.08.007Chizoba EkezieF-GSunDWChengJHA review on recent advances in cold plasma technology for the food industry: current applications and future trends. Trends Food Sci Technol. 2017 Nov; 69:4658. doi:10.1016/j.tifs.2017.08.007Open DOISearch in Google Scholar

Colonna W, Wan Z, Pankaj SK, Keener KM. High-voltage atmospheric cold plasma treatment of yeast for spoilage prevention. Plasma Med. 2017;7(2):97–107. doi:10.1615/PlasmaMed.2017019201ColonnaWWanZPankajSKKeenerKMHigh-voltage atmospheric cold plasma treatment of yeast for spoilage prevention. Plasma Med. 2017;7(2):97107. doi:10.1615/PlasmaMed.2017019201Open DOISearch in Google Scholar

Connor M, Flynn PB, Fairley DJ, Marks N, Manesiotis P, Graham WG, Gilmore BF, McGrath JW. Evolutionary clade affects resistance of Clostridium difficile spores to Cold Atmospheric Plasma. Sci Rep. 2017 Dec;7(1):41814. doi:10.1038/srep41814 MedlineConnorMFlynnPBFairleyDJMarksNManesiotisPGrahamWGGilmoreBFMcGrathJWEvolutionary clade affects resistance of Clostridium difficile spores to Cold Atmospheric Plasma. Sci Rep. 2017Dec;7(1):41814. doi:10.1038/srep41814Medline529053128155914Open DOISearch in Google Scholar

Coutinho NM, Silveira MR, Rocha RS, Moraes J, Ferreira MVS, Pimentel TC, Freitas MQ, Silva MC, Raices RSL, Ranadheera CS, et al. Cold plasma processing of milk and dairy products. Trends Food Sci Technol. 2018 Apr;74:56–68. doi:10.1016/j.tifs.2018.02.008CoutinhoNMSilveiraMRRochaRSMoraesJFerreiraMVSPimentelTCFreitasMQSilvaMCRaicesRSLRanadheeraCSet alCold plasma processing of milk and dairy products. Trends Food Sci Technol. 2018Apr;74:5668. doi:10.1016/j.tifs.2018.02.008Open DOISearch in Google Scholar

Czapka T, Maliszewska I, Olesiak-Bańska J. Influence of atmospheric pressure non-thermal plasma on inactivation of biofilm cells. Plasma Chem Plasma Process. 2018 Nov;38(6):1181–1197. doi:10.1007/s11090-018-9925-zCzapkaTMaliszewskaIOlesiak-BańskaJInfluence of atmospheric pressure non-thermal plasma on inactivation of biofilm cells. Plasma Chem Plasma Process. 2018Nov;38(6):11811197. doi:10.1007/s11090-018-9925-zOpen DOISearch in Google Scholar

Czyzewska-Dors E, Dors A, Pomorska-Mól M. Właściwości biofilmu bakteryjnego warunkujące oporność na antybiotyki oraz metody jego zwalczania. Zycie Wet. 2018;93(11):765–771.Czyzewska-DorsEDorsAPomorska-MólMWłaściwości biofilmu bakteryjnego warunkujące oporność na antybiotyki oraz metody jego zwalczania. Zycie Wet. 2018;93(11):765771.Search in Google Scholar

Dasan BG, Boyaci IH, Mutlu M. Nonthermal plasma treatment of Aspergillus spp. spores on hazelnuts in an atmospheric pressure fluidized bed plasma system: impact of process parameters and surveillance of the residual viability of spores. J Food Eng. 2017a Mar;196:139–149. doi:10.1016/j.jfoodeng.2016.09.028DasanBGBoyaciIHMutluMNonthermal plasma treatment of Aspergillus spp. spores on hazelnuts in an atmospheric pressure fluidized bed plasma system: impact of process parameters and surveillance of the residual viability of spores. J Food Eng. 2017aMar;196:139149. doi:10.1016/j.jfoodeng.2016.09.028Open DOISearch in Google Scholar

Dasan BG, Mutlu M, Boyaci IH. Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor. Int J Food Microbiol. 2016 Jan;216:50–59. doi:10.1016/j.ijfoodmicro.2015.09.006 MedlineDasanBGMutluMBoyaciIHDecontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor. Int J Food Microbiol. 2016Jan;216:5059. doi:10.1016/j.ijfoodmicro.2015.09.006Medline26398284Open DOISearch in Google Scholar

Dasan BG, Onal-Ulusoy B, Pawłat J, Diatczyk J, Sen Y, Mutlu M. A new and simple approach for decontamination of food contact surfaces with gliding arc discharge atmospheric non-thermal plasma. Food Bioprocess Technol. 2017b Apr;10(4):650–661. doi:10.1007/s11947-016-1847-2DasanBGOnal-UlusoyBPawłatJDiatczykJSenYMutluMA new and simple approach for decontamination of food contact surfaces with gliding arc discharge atmospheric non-thermal plasma. Food Bioprocess Technol. 2017bApr;10(4):650661. doi:10.1007/s11947-016-1847-2Open DOISearch in Google Scholar

Deng X, Shi J, Kong MG. Physical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas. IEEE Trans Plasma Sci. 2006 Aug;34(4):1310–1316. doi:10.1109/TPS.2006.877739DengXShiJKongMGPhysical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas. IEEE Trans Plasma Sci. 2006Aug;34(4):13101316. doi:10.1109/TPS.2006.877739Open DOISearch in Google Scholar

Dobrynin D, Fridman G, Mukhin YV, Wynosky-Dolfi MA, Rieger J, Rest RF, Gutsol AF, Fridman A. Cold plasma inactivation of Bacillus cereus and Bacillus anthracis (anthrax) spores. IEEE Trans Plasma Sci. 2010 Aug;38(8):1878–1884. doi:10.1109/TPS.2010.2041938DobryninDFridmanGMukhinYVWynosky-DolfiMARiegerJRestRFGutsolAFFridmanACold plasma inactivation of Bacillus cereus and Bacillus anthracis (anthrax) spores. IEEE Trans Plasma Sci. 2010Aug;38(8):18781884. doi:10.1109/TPS.2010.2041938Open DOISearch in Google Scholar

Dolezalova E, Lukes P. Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet. Bioelectrochemistry. 2015 Jun;103:7–14. doi:10.1016/j.bioelechem.2014.08.018 MedlineDolezalovaELukesPMembrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet. Bioelectrochemistry. 2015Jun;103:714. doi:10.1016/j.bioelechem.2014.08.018Medline25212700Open DOISearch in Google Scholar

Dzimitrowicz A, Jamróz P, Nowak P. Sterylizacja za pomocą niskotemperaturowej plazmy, generowanej w warunkach ciśnienia atmosferycznego. Postepy Mikrobiol. 2015;54(2):195–200.DzimitrowiczAJamrózPNowakPSterylizacja za pomocą niskotemperaturowej plazmy, generowanej w warunkach ciśnienia atmosferycznego. Postepy Mikrobiol. 2015;54(2):195200.Search in Google Scholar

Ermolaeva SA, Varfolomeev AF, Chernukha MY, Yurov DS, Vasiliev MM, Kaminskaya AA, Moisenovich MM, Romanova JM, Murashev AN, Selezneva II, et al. Bactericidal effects of nonthermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J Med Microbiol. 2011 Jan 01;60(1):75–83. doi:10.1099/jmm.0.020263-0 MedlineErmolaevaSAVarfolomeevAFChernukhaMYYurovDSVasilievMMKaminskayaAAMoisenovichMMRomanovaJMMurashevANSeleznevaIIet alBactericidal effects of nonthermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J Med Microbiol. 2011Jan 01;60(1):7583. doi:10.1099/jmm.0.020263-0Medline20829396Open DOISearch in Google Scholar

Fiebrandt M, Lackmann JW, Raguse M, Moeller R, Awakowicz P, Stapelmann K. VUV absorption spectroscopy of bacterial spores and DNA components. Plasma Phys Contr Fusion. 2017 Jan 01; 59(1):014010. doi:10.1088/0741-3335/59/1/014010FiebrandtMLackmannJWRaguseMMoellerRAwakowiczPStapelmannKVUV absorption spectroscopy of bacterial spores and DNA components. Plasma Phys Contr Fusion. 2017Jan 01; 59(1):014010. doi:10.1088/0741-3335/59/1/014010Open DOISearch in Google Scholar

Filatova I, Azharonok V, Lyushkevich V, Zhukovsky A, Mildažienė V, Pauzaite G, Zukiene RAM. 2016. The effect of presowing plasma seeds treatment on germination, plants resistance to pathogens and crop capacity. Paper presented at: 1st International Workshop on Plasma Agriculture; Camden, NJ.FilatovaIAzharonokVLyushkevichVZhukovskyAMildažienėVPauzaiteGZukieneRAM2016. The effect of presowing plasma seeds treatment on germination, plants resistance to pathogens and crop capacity. Paper presented at: 1st International Workshop on Plasma Agriculture; Camden, NJ.Search in Google Scholar

Flynn PB, Higginbotham S, Alshraiedeh NH, Gorman SP, Graham WG, Gilmore BF. Bactericidal efficacy of atmospheric pressure non-thermal plasma (APNTP) against the ESKAPE pathogens. Int J Antimicrob Agents. 2015 Jul;46(1):101–107. doi:10.1016/j.ijantimicag.2015.02.026 MedlineFlynnPBHigginbothamSAlshraiedehNHGormanSPGrahamWGGilmoreBFBactericidal efficacy of atmospheric pressure non-thermal plasma (APNTP) against the ESKAPE pathogens. Int J Antimicrob Agents. 2015Jul;46(1):101107. doi:10.1016/j.ijantimicag.2015.02.026Medline25963338Open DOISearch in Google Scholar

Fridman A, Chirokov A, Gutsol A. Non-thermal atmospheric pres sure discharges. J Phys D Appl Phys. 2005 Jan 21;38(2):R1–R24. doi:10.1088/0022-3727/38/2/R01FridmanAChirokovAGutsolANon-thermal atmospheric pres sure discharges. J Phys D Appl Phys. 2005Jan 21;38(2):R1R24. doi:10.1088/0022-3727/38/2/R01Open DOISearch in Google Scholar

Gallagher MJ, Vaze N, Gangoli S, Vasilets VN, Gutsol AF, Milovanova TN, Anandan S, Murasko DM, Fridman AA. Rapid inactivation of airborne bacteria using atmospheric pressure dielectric barrier grating discharge. IEEE Trans Plasma Sci. 2007 Oct; 35(5):1501–1510. doi:10.1109/TPS.2007.905209GallagherMJVazeNGangoliSVasiletsVNGutsolAFMilovanovaTNAnandanSMuraskoDMFridmanAARapid inactivation of airborne bacteria using atmospheric pressure dielectric barrier grating discharge. IEEE Trans Plasma Sci. 2007 Oct; 35(5):15011510. doi:10.1109/TPS.2007.905209Open DOISearch in Google Scholar

Guo L, Zhao Y, Liu D, Liu Z, Chen C, Xu R, Tian M, Wang X, Chen H, Kong MG. Cold atmospheric-pressure plasma induces DNA – protein crosslinks through protein oxidation. Free Radic Res. 2018 Jul 03;52(7):783–798. doi:10.1080/10715762.2018.1471476 MedlineGuoLZhaoYLiuDLiuZChenCXuRTianMWangXChenHKongMGCold atmospheric-pressure plasma induces DNA – protein crosslinks through protein oxidation. Free Radic Res. 2018Jul 03;52(7):783798. doi:10.1080/10715762.2018.1471476Medline29722278Open DOISearch in Google Scholar

Hojnik N, Cvelbar U, Tavčar-Kalcher G, Walsh J, Križaj I. Cold atmospheric pressure plasma versus “classic” decontamination. Toxins (Basel). 2017 Apr 28;9(5):151. doi:10.3390/toxins9050151 MedlineHojnikNCvelbarUTavčar-KalcherGWalshJKrižajICold atmospheric pressure plasma versus “classic” decontamination. Toxins (Basel). 2017Apr 28;9(5):151. doi:10.3390/toxins9050151Medline545069928452957Open DOISearch in Google Scholar

Hong YF, Kang JG, Lee HY, Uhm HS, Moon E, Park YH. Sterilization effect of atmospheric plasma on Escherichia coli and Bacillus subtilis endospores. Lett Appl Microbiol. 2009 Jan;48(1):33–37. doi:10.1111/j.1472-765X.2008.02480.x MedlineHongYFKangJGLeeHYUhmHSMoonEParkYHSterilization effect of atmospheric plasma on Escherichia coli and Bacillus subtilis endospores. Lett Appl Microbiol. 2009Jan;48(1):3337. doi:10.1111/j.1472-765X.2008.02480.xMedline19018968Open DOISearch in Google Scholar

Hosseinzadeh Colagar A, Memariani H, Sohbatzadeh F, Valinataj Omran A. Nonthermal atmospheric argon plasma jet effects on Escherichia coli biomacromolecules. Appl Biochem Biotechnol. 2013 Dec;171(7):1617–1629. doi:10.1007/s12010-013-0430-9 MedlineHosseinzadeh ColagarAMemarianiHSohbatzadehFValinataj OmranANonthermal atmospheric argon plasma jet effects on Escherichia coli biomacromolecules. Appl Biochem Biotechnol. 2013Dec;171(7):16171629. doi:10.1007/s12010-013-0430-9Medline23982422Open DOISearch in Google Scholar

Isbary G, Morfill G, Schmidt HU, Georgi M, Ramrath K, Heinlin J, Karrer S, Landthaler M, Shimizu T, Steffes B, et al. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol. 2010 May;163(1):78–82. doi:10.1111/j.1365-2133.2010.09744.x MedlineIsbaryGMorfillGSchmidtHUGeorgiMRamrathKHeinlinJKarrerSLandthalerMShimizuTSteffesBet alA first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol. 2010May;163(1):7882. doi:10.1111/j.1365-2133.2010.09744.xMedline20222930Open DOISearch in Google Scholar

Itooka K, Takahashi K, Kimata Y, Izawa S. Cold atmospheric pressure plasma causes protein denaturation and endoplasmic reticulum stress in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2018 Mar;102(5):2279–2288. doi:10.1007/s00253-018-8758-2 MedlineItookaKTakahashiKKimataYIzawaSCold atmospheric pressure plasma causes protein denaturation and endoplasmic reticulum stress in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2018Mar;102(5):22792288. doi:10.1007/s00253-018-8758-2Medline29356871Open DOISearch in Google Scholar

Jahid IK, Han N, Ha SD. Inactivation kinetics of cold oxygen plasma depend on incubation conditions of Aeromonas hydrophila biofilm on lettuce. Food Res Int. 2014 Jan;55:181–189. doi:10.1016/j.foodres.2013.11.005JahidIKHanNHaSDInactivation kinetics of cold oxygen plasma depend on incubation conditions of Aeromonas hydrophila biofilm on lettuce. Food Res Int. 2014Jan;55:181189. doi:10.1016/j.foodres.2013.11.005Open DOISearch in Google Scholar

Kądzielska J, Obuch-Woszczatyński P, Pituch H, Młynarczyk G. Clostridium perfringens jako czynnik etiologiczny biegunki poantybiotykowej. Postepy Mikrobiol. 2012;51(1):17–25.KądzielskaJObuch-WoszczatyńskiPPituchHMłynarczykGClostridium perfringens jako czynnik etiologiczny biegunki poantybiotykowej. Postepy Mikrobiol. 2012;51(1):1725.Search in Google Scholar

Kartaschew K, Baldus S, Mischo M, Bründermann E, Awakowicz P, Havenith M. Cold atmospheric-pressure plasma and bacteria: understanding the mode of action using vibrational microspectroscopy. J Phys D Appl Phys. 2016 Sep 21;49(37):374003. doi:10.1088/0022-3727/49/37/374003KartaschewKBaldusSMischoMBründermannEAwakowiczPHavenithMCold atmospheric-pressure plasma and bacteria: understanding the mode of action using vibrational microspectroscopy. J Phys D Appl Phys. 2016Sep 21;49(37):374003. doi:10.1088/0022-3727/49/37/374003Open DOISearch in Google Scholar

Kim GC, Kim GJ, Park SR, Jeon SM, Seo HJ, Iza F, Lee JK. Air plasma coupled with antibody-conjugated nanoparticles: a new weapon against cancer. J Phys D Appl Phys. 2009 Feb 07;42(3):032005. doi:10.1088/0022-3727/42/3/032005KimGCKimGJParkSRJeonSMSeoHJIzaFLeeJKAir plasma coupled with antibody-conjugated nanoparticles: a new weapon against cancer. J Phys D Appl Phys. 2009Feb 07;42(3):032005. doi:10.1088/0022-3727/42/3/032005Open DOISearch in Google Scholar

Klämpfl TG, Isbary G, Shimizu T, Li YF, Zimmermann JL, Stolz W, Schlegel J, Morfill GE, Schmidt HU. Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Appl Environ Microbiol. 2012 Aug 01;78(15):5077–5082. doi:10.1128/AEM.00583-12 MedlineKlämpflTGIsbaryGShimizuTLiYFZimmermannJLStolzWSchlegelJMorfillGESchmidtHUCold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Appl Environ Microbiol. 2012Aug 01;78(15):50775082. doi:10.1128/AEM.00583-12Medline341643622582068Open DOISearch in Google Scholar

Klämpfl TG, Shimizu T, Koch S, Balden M, Gemein S, Li YF, Mitra A, Zimmermann JL, Gebel J, Morfill GE, et al. Decontamination of nosocomial bacteria including Clostridium difficile spores on dry inanimate surface by cold atmospheric plasma. Plasma Process Polym. 2014 Oct;11(10):974–984. doi:10.1002/ppap.201400080KlämpflTGShimizuTKochSBaldenMGemeinSLiYFMitraAZimmermannJLGebelJMorfillGEet alDecontamination of nosocomial bacteria including Clostridium difficile spores on dry inanimate surface by cold atmospheric plasma. Plasma Process Polym. 2014Oct;11(10):974984. doi:10.1002/ppap.201400080Open DOISearch in Google Scholar

Korachi M, Turan Z, Şentürk K, Şahin F, Aslan N. An investigation into the biocidal effect of high voltage AC/DC atmospheric corona discharges on bacteria, yeasts, fungi and algae. J Electrost. 2009 Jul;67(4):678–685. doi:10.1016/j.elstat.2009.03.002KorachiMTuranZŞentürkKŞahinFAslanNAn investigation into the biocidal effect of high voltage AC/DC atmospheric corona discharges on bacteria, yeasts, fungi and algae. J Electrost. 2009Jul;67(4):678685. doi:10.1016/j.elstat.2009.03.002Open DOISearch in Google Scholar

Krzyczkowska J, Stolarzewicz I, Bellok D, Bellok M, Białecka-Florjańczyk E. Wpływ modyfikacji pożywki na biokatalityczne właściwości drożdży. Żywn Nauka Technol Jakość. 2008;15(5):299–306.KrzyczkowskaJStolarzewiczIBellokDBellokMBiałecka-FlorjańczykEWpływ modyfikacji pożywki na biokatalityczne właściwości drożdży. Żywn Nauka Technol Jakość. 2008;15(5):299306.Search in Google Scholar

Lademann O, Kramer A, Richter H, Patzelt A, Meinke MC, Roewert-Huber J, Czaika V, Weltmann K-D, Hartmann B, Koch S. Antisepsis of the follicular reservoir by treatment with tissue-tolerable plasma (TTP). Laser Phys Lett. 2011 Apr;8(4):313–317. doi:10.1002/lapl.201010123LademannOKramerARichterHPatzeltAMeinkeMCRoewert-HuberJCzaikaVWeltmannK-DHartmannBKochSAntisepsis of the follicular reservoir by treatment with tissue-tolerable plasma (TTP). Laser Phys Lett. 2011Apr;8(4):313317. doi:10.1002/lapl.201010123Open DOISearch in Google Scholar

Laroussi M, Mendis DA, Rosenberg M. Plasma interaction with microbes. New J Phys. 2003;5(1):41.1–41.10.LaroussiMMendisDARosenbergMPlasma interaction with microbes. New J Phys. 2003;5(1):41.141.10.10.1088/1367-2630/5/1/341Search in Google Scholar

Laskowska M, Bogusławska-Wąs E, Kowal P, Hołub M, Dąbrow-ski W. Skuteczność wykorzystania niskotemperaturowej plazmy w mikrobiologii i medycynie. Postepy Mikrobiol. 2016;55(2):172–181.LaskowskaMBogusławska-WąsEKowalPHołubMDąbrow-skiWSkuteczność wykorzystania niskotemperaturowej plazmy w mikrobiologii i medycynie. Postepy Mikrobiol. 2016;55(2):172181.Search in Google Scholar

Li HP, Wang LY, Li G, Jin LH, Le PS, Zhao HX, Xing XH, Bao CY. Manipulation of lipase activity by the helium radio-frequency, atmospheric-pressure glow discharge plasma jet. Plasma Process Polym. 2011 Mar 22;8(3):224–229. doi:10.1002/ppap.201000035LiHPWangLYLiGJinLHLePSZhaoHXXingXHBaoCYManipulation of lipase activity by the helium radio-frequency, atmospheric-pressure glow discharge plasma jet. Plasma Process Polym. 2011Mar 22;8(3):224229. doi:10.1002/ppap.201000035Open DOISearch in Google Scholar

Liao X, Cullen PJ, Liu D, Muhammad AI, Chen S, Ye X, Wang J, Ding T. Combating Staphylococcus aureus and its methicillin resistance gene (mecA) with cold plasma. Sci Total Environ. 2018 Dec;645:1287–1295. doi:10.1016/j.scitotenv.2018.07.190 MedlineLiaoXCullenPJLiuDMuhammadAIChenSYeXWangJDingTCombating Staphylococcus aureus and its methicillin resistance gene (mecA) with cold plasma. Sci Total Environ. 2018Dec;645:12871295. doi:10.1016/j.scitotenv.2018.07.190Medline30248853Open DOISearch in Google Scholar

Liao X, Liu D, Xiang Q, Ahn J, Chen S, Ye X, Ding T. Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control. 2017 May;75:83–91. doi:10.1016/j.foodcont.2016.12.021LiaoXLiuDXiangQAhnJChenSYeXDingTInactivation mechanisms of non-thermal plasma on microbes: A review. Food Control. 2017May;75:8391. doi:10.1016/j.foodcont.2016.12.021Open DOISearch in Google Scholar

Lu Q, Liu D, Song Y, Zhou R, Niu J. Inactivation of the tomato pathogen Cladosporium fulvum by an atmospheric-pressure cold plasma jet. Plasma Process Polym. 2014 Nov;11(11):1028–1036. doi:10.1002/ppap.201400070LuQLiuDSongYZhouRNiuJInactivation of the tomato pathogen Cladosporium fulvum by an atmospheric-pressure cold plasma jet. Plasma Process Polym. 2014Nov;11(11):10281036. doi:10.1002/ppap.201400070Open DOISearch in Google Scholar

Maciejewska M, Bauer M, Dawgul M. Nowoczesne metody zwalczania biofilmu bakteryjnego. Postepy Mikrobiol. 2016;55(1):3–11.MaciejewskaMBauerMDawgulMNowoczesne metody zwalczania biofilmu bakteryjnego. Postepy Mikrobiol. 2016;55(1):311.Search in Google Scholar

Mai-Prochnow A, Clauson M, Hong J, Murphy AB. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci Rep. 2016 Dec;6(1):38610. doi:10.1038/srep38610 MedlineMai-ProchnowAClausonMHongJMurphyABGram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci Rep. 2016Dec;6(1):38610. doi:10.1038/srep38610Medline514692727934958Open DOISearch in Google Scholar

Mai-Prochnow A, Murphy AB, McLean KM, Kong MG, Ostrikov KK. Atmospheric pressure plasmas: infection control and bacterial responses. Int J Antimicrob Agents. 2014 Jun;43(6):508–517. doi:10.1016/j.ijantimicag.2014.01.025 MedlineMai-ProchnowAMurphyABMcLeanKMKongMGOstrikovKKAtmospheric pressure plasmas: infection control and bacterial responses. Int J Antimicrob Agents. 2014Jun;43(6):508517. doi:10.1016/j.ijantimicag.2014.01.025Medline24637224Open DOISearch in Google Scholar

Metelmann HR, Seebauer C, Miller V, Fridman A, Bauer G, Graves DB, Pouvesle J-M, Rutkowski R, Schuster M, Bekeschus S, et al. Clinical experience with cold plasma in the treatment of locally advanced head and neck cancer. Clin Plasma Med. 2018 Mar;9:6–13. doi:10.1016/j.cpme.2017.09.001MetelmannHRSeebauerCMillerVFridmanABauerGGravesDBPouvesleJ-MRutkowskiRSchusterMBekeschusSet alClinical experience with cold plasma in the treatment of locally advanced head and neck cancer. Clin Plasma Med. 2018Mar;9:613. doi:10.1016/j.cpme.2017.09.001Open DOISearch in Google Scholar

Misra NN, Pankaj SK, Segat A, Ishikawa K. Cold plasma interactions with enzymes in foods and model systems. Trends Food Sci Technol. 2016 Sep;55:39–47. doi:10.1016/j.tifs.2016.07.001MisraNNPankajSKSegatAIshikawaKCold plasma interactions with enzymes in foods and model systems. Trends Food Sci Technol. 2016Sep;55:3947. doi:10.1016/j.tifs.2016.07.001Open DOISearch in Google Scholar

Misra NN, Schlüter O, Cullen PJ. Plasma in food and agriculture. Amsterdam (Netherlands): Academic Press. 2016. p. 1–16.MisraNNSchlüterOCullenPJPlasma in food and agriculture. Amsterdam (Netherlands): Academic Press. 2016. p. 116.10.1016/B978-0-12-801365-6.00001-9Search in Google Scholar

Moreau M, Orange N, Feuilloley MGJ. Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol Adv. 2008 Nov;26(6):610–617. doi:10.1016/j.biotechadv.2008.08.001 MedlineMoreauMOrangeNFeuilloleyMGJNon-thermal plasma technologies: new tools for bio-decontamination. Biotechnol Adv. 2008Nov;26(6):610617. doi:10.1016/j.biotechadv.2008.08.001Medline18775485Open DOISearch in Google Scholar

Nikmaram H, Rezaei Kanavi M, Ghoranneviss M, Balagholi S, Ahmadieh H, Roshandel D, Amini M. Cold atmospheric pressure plasma jet for the treatment of Aspergillus keratitis. Clin Plasma Med. 2018 Mar;9:14–18. doi:10.1016/j.cpme.2017.12.075NikmaramHRezaei KanaviMGhorannevissMBalagholiSAhmadiehHRoshandelDAminiMCold atmospheric pressure plasma jet for the treatment of Aspergillus keratitis. Clin Plasma Med. 2018Mar;9:1418. doi:10.1016/j.cpme.2017.12.075Open DOISearch in Google Scholar

Nishime TMC, Borges AC, Koga-Ito CY, Machida M, Hein LRO, Kostov KG. Non-thermal atmospheric pressure plasma jet applied to inactivation of different microorganisms. Surf Coat Tech. 2017 Feb;312:19–24. doi:10.1016/j.surfcoat.2016.07.076NishimeTMCBorgesACKoga-ItoCYMachidaMHeinLROKostovKGNon-thermal atmospheric pressure plasma jet applied to inactivation of different microorganisms. Surf Coat Tech. 2017Feb;312:1924. doi:10.1016/j.surfcoat.2016.07.076Open DOISearch in Google Scholar

Olesiak P, Stępniak L. Skuteczność wybranych związków dezynfekcyjnych wobec przetrwalników Bacillus. Inżynieria i Ochrona Środowiska. 2012;15:41–50.OlesiakPStępniakLSkuteczność wybranych związków dezynfekcyjnych wobec przetrwalników Bacillus. Inżynieria i Ochrona Środowiska. 2012;15:4150.Search in Google Scholar

Ouf SA, Basher AH, Mohamed AAH. Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits. J Sci Food Agric. 2015 Dec;95(15):3204–3210. doi:10.1002/jsfa.7060 MedlineOufSABasherAHMohamedAAHInhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits. J Sci Food Agric. 2015Dec;95(15):32043210. doi:10.1002/jsfa.7060Medline25557283Open DOISearch in Google Scholar

Pankaj SK, Shi H, Keener KM. A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends Food Sci Technol. 2018 Jan;71:73–83. doi:10.1016/j.tifs.2017.11.007PankajSKShiHKeenerKMA review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends Food Sci Technol. 2018Jan;71:7383. doi:10.1016/j.tifs.2017.11.007Open DOISearch in Google Scholar

Panngom K, Lee SH, Park DH, Sim GB, Kim YH, Uhm HS, Park G, Choi EH. Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host. PLoS One. 2014 Jun 9;9(6):e99300. doi:10.1371/journal.pone.0099300 MedlinePanngomKLeeSHParkDHSimGBKimYHUhmHSParkGChoiEHNon-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host. PLoS One. 2014Jun 9;9(6):e99300. doi:10.1371/journal.pone.0099300Medline404983324911947Open DOISearch in Google Scholar

Pawłat J, Kwiatkowski M, Terebun P, Murakami T. RF-powered atmospheric-pressure plasma jet in surface treatment of high-impact polystyrene. IEEE Trans Plasma Sci. 2016 Mar;44(3): 314–320. doi:10.1109/TPS.2015.2436061PawłatJKwiatkowskiMTerebunPMurakamiTRF-powered atmospheric-pressure plasma jet in surface treatment of high-impact polystyrene. IEEE Trans Plasma Sci. 2016Mar;44(3): 314320. doi:10.1109/TPS.2015.2436061Open DOISearch in Google Scholar

Pawłat J, Starek A, Sujak A, Kwiatkowski M, Terebun P, Budzeń M. Effects of atmospheric pressure plasma generated in GlidArc reactor on Lavatera thuringiaca L. seeds’ germination. Plasma Process Polym. 2018a Feb;15(2):1700064. doi:10.1002/ppap.201700064PawłatJStarekASujakAKwiatkowskiMTerebunPBudzeńMEffects of atmospheric pressure plasma generated in GlidArc reactor on Lavatera thuringiaca L. seeds’ germination. Plasma Process Polym. 2018aFeb;15(2):1700064. doi:10.1002/ppap.201700064Open DOISearch in Google Scholar

Pawłat J, Starek A, Sujak A, Terebun P, Kwiatkowski M, Budzeń M, Andrejko D. Effects of atmospheric pressure plasma jet operating with DBD on Lavatera thuringiaca L. seeds’ germination. PLoS One. 2018b Apr 9;13(4):e0194349. doi:10.1371/journal.pone.0194349 MedlinePawłatJStarekASujakATerebunPKwiatkowskiMBudzeńMAndrejkoDEffects of atmospheric pressure plasma jet operating with DBD on Lavatera thuringiaca L. seeds’ germination. PLoS One. 2018bApr 9;13(4):e0194349. doi:10.1371/journal.pone.0194349Medline589098429630623Open DOISearch in Google Scholar

Pawłat J. Atmospheric pressure plasma jet for decontamination purposes. Eur Phys J Appl Phys. 2013;61:1–11.PawłatJAtmospheric pressure plasma jet for decontamination purposes. Eur Phys J Appl Phys. 2013;61:111.10.1051/epjap/2012120431Search in Google Scholar

Pignata C, D’Angelo D, Fea E, Gilli G. A review on microbiological decontamination of fresh produce with nonthermal plasma. J Appl Microbiol. 2017 Jun;122(6):1438–1455. doi:10.1111/jam.13412 MedlinePignataCD’AngeloDFeaEGilliGA review on microbiological decontamination of fresh produce with nonthermal plasma. J Appl Microbiol. 2017Jun;122(6):14381455. doi:10.1111/jam.13412Medline28160353Open DOISearch in Google Scholar

Polčic P, Pakosová L, Chovančíková P, Machala Z. Reactive cold plasma particles generate oxidative stress in yeast but do not trigger apoptosis. Can J Microbiol. 2018 Jun;64(6):367–375. doi:10.1139/cjm-2017-0753 MedlinePolčicPPakosováLChovančíkováPMachalaZReactive cold plasma particles generate oxidative stress in yeast but do not trigger apoptosis. Can J Microbiol. 2018Jun;64(6):367375. doi:10.1139/cjm-2017-0753Medline29438626Open DOISearch in Google Scholar

Pradeep P, Chulkyoon M. Non-thermal plasmas (NTPs) for inactivation of viruses in abiotic environment. Res J Biotechnol. 2016;11:91–96.PradeepPChulkyoonMNon-thermal plasmas (NTPs) for inactivation of viruses in abiotic environment. Res J Biotechnol. 2016;11:9196.Search in Google Scholar

Raguse M, Fiebrandt M, Denis B, Stapelmann K, Eichenberger P, Driks A, Eaton P, Awakowicz P, Moeller R. Understanding of the importance of the spore coat structure and pigmentation in the Bacillus subtilis spore resistance to low-pressure plasma sterilization. J Phys D Appl Phys. 2016 Jul 20;49(28):285401. doi:10.1088/0022-3727/49/28/285401RaguseMFiebrandtMDenisBStapelmannKEichenbergerPDriksAEatonPAwakowiczPMoellerRUnderstanding of the importance of the spore coat structure and pigmentation in the Bacillus subtilis spore resistance to low-pressure plasma sterilization. J Phys D Appl Phys. 2016Jul 20;49(28):285401. doi:10.1088/0022-3727/49/28/285401Open DOISearch in Google Scholar

Ritter AC, Santi L, Vannini L, Beys-da-Silva WO, Gozzi G, Yates J 3rd, Ragni L, Brandelli A. Comparative proteomic analysis of foodborne Salmonella Enteritidis SE86 subjected to cold plasma treatment. Food Microbiol. 2018 Dec;76:310–318. doi:10.1016/j.fm.2018.06.012 MedlineRitterACSantiLVanniniLBeys-da-SilvaWOGozziGYatesJ3rdRagniLBrandelliAComparative proteomic analysis of foodborne Salmonella Enteritidis SE86 subjected to cold plasma treatment. Food Microbiol. 2018Dec;76:310318. doi:10.1016/j.fm.2018.06.012Medline30166156Open DOISearch in Google Scholar

Roth S, Feichtinger J, Hertel C. Response of Deinococcus radiodurans to low-pressure low-temperature plasma sterilization processes. J Appl Microbiol. 2010 Jun;109(5):1521–1530. doi:10.1111/j.1365-2672.2010.04771.x MedlineRothSFeichtingerJHertelCResponse of Deinococcus radiodurans to low-pressure low-temperature plasma sterilization processes. J Appl Microbiol. 2010Jun;109(5):15211530. doi:10.1111/j.1365-2672.2010.04771.xMedline20553346Open DOISearch in Google Scholar

Ryu YH, Kim YH, Lee JY, Shim GB, Uhm HS, Park G, Choi EH. Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma. PLoS One. 2013 Jun 14;8(6):e66231. doi:10.1371/journal.pone.0066231 MedlineRyuYHKimYHLeeJYShimGBUhmHSParkGChoiEHEffects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma. PLoS One. 2013Jun 14;8(6):e66231. doi:10.1371/journal.pone.0066231Medline368303123799081Open DOISearch in Google Scholar

Samoń R, Czapiński J, Grządziel J, Płonka M, Pawłat J, Diatczyk J. Ocena działania bakteriobójczego niskotemperaturowej plazmy nie równowagowej generowanej w reaktorze RF. Eur J Med Technol. 2014;2:17–26.SamońRCzapińskiJGrządzielJPłonkaMPawłatJDiatczykJOcena działania bakteriobójczego niskotemperaturowej plazmy nie równowagowej generowanej w reaktorze RF. Eur J Med Technol. 2014;2:1726.Search in Google Scholar

Sharma A, Collins G, Pruden A. Differential gene expression in Escherichia coli following exposure to nonthermal atmospheric pressure plasma. J Appl Microbiol. 2009 Nov;107(5):1440–1449. doi:10.1111/j.1365-2672.2009.04323.x MedlineSharmaACollinsGPrudenADifferential gene expression in Escherichia coli following exposure to nonthermal atmospheric pressure plasma. J Appl Microbiol. 2009Nov;107(5):14401449. doi:10.1111/j.1365-2672.2009.04323.xMedline19426273Open DOISearch in Google Scholar

Shi H, Ileleji K, Stroshine RL, Keener K, Jensen JL. Reduction of aflatoxin in corn by high voltage atmospheric cold plasma. Food Bioprocess Technol. 2017 Jun;10(6):1042–1052. doi:10.1007/s11947-017-1873-8ShiHIlelejiKStroshineRLKeenerKJensenJLReduction of aflatoxin in corn by high voltage atmospheric cold plasma. Food Bioprocess Technol. 2017Jun;10(6):10421052. doi:10.1007/s11947-017-1873-8Open DOISearch in Google Scholar

Siciliano I, Spadaro D, Prelle A, Vallauri D, Cavallero M, Garibaldi A, Gullino M. Use of cold atmospheric plasma to detoxify hazelnuts from aflatoxins. Toxins (Basel). 2016 Apr 26;8(5):125. doi:10.3390/toxins8050125 MedlineSicilianoISpadaroDPrelleAVallauriDCavalleroMGaribaldiAGullinoMUse of cold atmospheric plasma to detoxify hazelnuts from aflatoxins. Toxins (Basel). 2016Apr 26;8(5):125. doi:10.3390/toxins8050125Medline488504027128939Open DOISearch in Google Scholar

Siddique SS, Hardy GESJ, Bayliss KL. Cold plasma: a potential new method to manage postharvest diseases caused by fungal plant pathogens. Plant Pathol. 2018 Jun;67(5):1011–1021. doi:10.1111/ppa.12825SiddiqueSSHardyGESJBaylissKLCold plasma: a potential new method to manage postharvest diseases caused by fungal plant pathogens. Plant Pathol. 2018Jun;67(5):10111021. doi:10.1111/ppa.12825Open DOISearch in Google Scholar

Šimončicová J, Kaliňáková B, Kováčik D, Medvecká V, Lakatoš B, Kryštofová S, Hoppanová L, Palušková V, Hudecová D, Ďurina P, et al. Cold plasma treatment triggers antioxidative defense system and induces changes in hyphal surface and subcellular structures of Aspergillus flavus. Appl Microbiol Biotechnol. 2018 Aug;102(15): 6647–6658. doi:10.1007/s00253-018-9118-y MedlineŠimončicováJKaliňákováBKováčikDMedveckáVLakatošBKryštofováSHoppanováLPaluškováVHudecováDĎurinaPet alCold plasma treatment triggers antioxidative defense system and induces changes in hyphal surface and subcellular structures of Aspergillus flavus. Appl Microbiol Biotechnol. 2018Aug;102(15): 66476658. doi:10.1007/s00253-018-9118-yMedline29858953Open DOISearch in Google Scholar

Sohbatzadeh F, Mirzanejhad S, Shokri H, Nikpour M. Inactivation of Aspergillus flavus spores in a sealed package by cold plasma streamers. J Theor Appl Phys. 2016 Jun;10(2):99–106. doi:10.1007/s40094-016-0206-zSohbatzadehFMirzanejhadSShokriHNikpourMInactivation of Aspergillus flavus spores in a sealed package by cold plasma streamers. J Theor Appl Phys. 2016Jun;10(2):99106. doi:10.1007/s40094-016-0206-zOpen DOISearch in Google Scholar

Su X, Tian Y, Zhou H, Li Y, Zhang Z, Jiang B, Yang B, Zhang J, Fang J. Inactivation efficacy of non-thermal plasma activated solutions against Newcastle disease virus. Appl Environ Microbiol. 2018 Feb 23;84(9):e02836-17. doi:10.1128/AEM.02836-17SuXTianYZhouHLiYZhangZJiangBYangBZhangJFangJInactivation efficacy of non-thermal plasma activated solutions against Newcastle disease virus. Appl Environ Microbiol. 2018Feb 23;84(9):e02836-17. doi:10.1128/AEM.02836-17593031929475861Open DOISearch in Google Scholar

Suhem K, Matan N, Nisoa M, Matan N. Inhibition of Aspergillus flavus on agar media and brown rice cereal bars using cold atmospheric plasma treatment. Int J Food Microbiol. 2013 Feb;161(2): 107–111. doi:10.1016/j.ijfoodmicro.2012.12.002 MedlineSuhemKMatanNNisoaMMatanNInhibition of Aspergillus flavus on agar media and brown rice cereal bars using cold atmospheric plasma treatment. Int J Food Microbiol. 2013Feb;161(2): 107111. doi:10.1016/j.ijfoodmicro.2012.12.002Medline23279819Open DOISearch in Google Scholar

Surowsky B, Fischer A, Schlueter O, Knorr D. Cold plasma effects on enzyme activity in a model food system. Innov Food Sci Emerg Technol. 2013 Jul;19:146–152. doi:10.1016/j.ifset.2013.04.002SurowskyBFischerASchlueterOKnorrDCold plasma effects on enzyme activity in a model food system. Innov Food Sci Emerg Technol. 2013Jul;19:146152. doi:10.1016/j.ifset.2013.04.002Open DOISearch in Google Scholar

Terrier O, Essere B, Yver M, Barthélémy M, Bouscambert-Duchamp M, Kurtz P, VanMechelen D, Morfin F, Billaud G, Ferraris O, et al. Cold oxygen plasma technology efficiency against different airborne respiratory viruses. J Clin Virol. 2009 Jun;45(2): 119–124. doi:10.1016/j.jcv.2009.03.017 MedlineTerrierOEssereBYverMBarthélémyMBouscambert-DuchampMKurtzPVanMechelenDMorfinFBillaudGFerrarisOet alCold oxygen plasma technology efficiency against different airborne respiratory viruses. J Clin Virol. 2009Jun;45(2): 119124. doi:10.1016/j.jcv.2009.03.017Medline19406687Open DOISearch in Google Scholar

Tolouie H, Mohammadifar MA, Ghomi H, Hashemi M. Cold atmospheric plasma manipulation of proteins in food systems. Crit Rev Food Sci Nutr. 2018;58(15):2583–2597. doi:10.1080/10408398.2017.1335689 MedlineTolouieHMohammadifarMAGhomiHHashemiMCold atmospheric plasma manipulation of proteins in food systems. Crit Rev Food Sci Nutr. 2018;58(15):25832597. doi:10.1080/10408398.2017.1335689Medline28613926Open DOISearch in Google Scholar

Tolouie H, Mohammadifar MA, Ghomi H, Yaghoubi AS, Hashemi M. The impact of atmospheric cold plasma treatment on inactivation of lipase and lipoxygenase of wheat germs. Innov Food Sci Emerg Technol. 2018 Jun;47:346–352. doi:10.1016/j.ifset.2018.03.002TolouieHMohammadifarMAGhomiHYaghoubiASHashemiMThe impact of atmospheric cold plasma treatment on inactivation of lipase and lipoxygenase of wheat germs. Innov Food Sci Emerg Technol. 2018Jun;47:346352. doi:10.1016/j.ifset.2018.03.002Open DOISearch in Google Scholar

Tseng S, Abramzon N, Jackson JO, Lin WJ. Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores. Appl Microbiol Biotechnol. 2012 Mar;93(6):2563–2570. doi:10.1007/s00253-011-3661-0 MedlineTsengSAbramzonNJacksonJOLinWJGas discharge plasmas are effective in inactivating Bacillus and Clostridium spores. Appl Microbiol Biotechnol. 2012Mar;93(6):25632570. doi:10.1007/s00253-011-3661-0Medline22075631Open DOISearch in Google Scholar

Vandamme M, Robert E, Pesnel S, Barbosa E, Dozias S, Sobilo J, Lerondel S, Le Pape A, Pouvesle JM. Antitumor effect of plasma treatment on U87 glioma xenografts: preliminary results. Plasma Pro cess Polym. 2010 Mar 22;7(3-4):264–273. doi:10.1002/ppap.200900080VandammeMRobertEPesnelSBarbosaEDoziasSSobiloJLerondelS, Le PapeAPouvesleJMAntitumor effect of plasma treatment on U87 glioma xenografts: preliminary results. Plasma Pro cess Polym. 2010Mar 22;7(3-4):264273. doi:10.1002/ppap.200900080Open DOISearch in Google Scholar

Wang G, Zhang P, Setlow P, Li Y. Kinetics of germination of wet-heat-treated individual spores of Bacillus species, monitored by Raman spectroscopy and differential interference contrast microscopy. Appl Environ Microbiol. 2011 May 15;77(10):3368–3379. doi:10.1128/AEM.00046-11 MedlineWangGZhangPSetlowPLiYKinetics of germination of wet-heat-treated individual spores of Bacillus species, monitored by Raman spectroscopy and differential interference contrast microscopy. Appl Environ Microbiol. 2011May 15;77(10):33683379. doi:10.1128/AEM.00046-11Medline312643821441336Open DOISearch in Google Scholar

Wang SQ, Huang GQ, Li YP, Xiao JX, Zhang Y, Jiang WL. Degradation of aflatoxin B1 by low-temperature radio frequency plasma and degradation product elucidation. Eur Food Res Technol. 2015 Jul;241(1):103–113. doi:10.1007/s00217-015-2439-5WangSQHuangGQLiYPXiaoJXZhangYJiangWLDegradation of aflatoxin B1 by low-temperature radio frequency plasma and degradation product elucidation. Eur Food Res Technol. 2015Jul;241(1):103113. doi:10.1007/s00217-015-2439-5Open DOISearch in Google Scholar

Wawrzycka D. Drożdże jako model w badaniach chorób neurodege neracyjnych. Postepy Hig Med Dosw. 2011 Jun 2;65:328–337. doi:10.5604/17322693.945767WawrzyckaDDrożdże jako model w badaniach chorób neurodege neracyjnych. Postepy Hig Med Dosw. 2011Jun 2;65:328337. doi:10.5604/17322693.94576721677357Open DOISearch in Google Scholar

Wiktor A, Śledź M, Nowacka M, Witrowa-Rajchert D. Możliwości zastosowania niskotemperaturowej plazmy w technologii żywności. Żywn Nauka Technol Jakość. 2013. 5:5–14.WiktorAŚledźMNowackaMWitrowa-RajchertDMożliwości zastosowania niskotemperaturowej plazmy w technologii żywności. Żywn Nauka Technol Jakość. 2013. 5:514.Search in Google Scholar

Wolny-Koładka K, Pawłat J, Terebun P, Kwiatkowski M, Diatczyk J. Ocena możliwości zastosowania plazmy niskotemperaturowej w celu higienizacji zmieszanych odpadów komunalnych służących do produkcji paliwa alternatywnego. Przegl Elektrotechn. 2017 Nov 5;1(11):211–215. doi:10.15199/48.2017.11.43Wolny-KoładkaKPawłatJTerebunPKwiatkowskiMDiatczykJOcena możliwości zastosowania plazmy niskotemperaturowej w celu higienizacji zmieszanych odpadów komunalnych służących do produkcji paliwa alternatywnego. Przegl Elektrotechn. 2017Nov 5;1(11):211215. doi:10.15199/48.2017.11.43Open DOISearch in Google Scholar

Yasuda H, Miura T, Kurita H, Takashima K, Mizuno A. Biological evaluation of DNA damage in bacteriophages inactivated by atmospheric pressure cold plasma. Plasma Process Polym. 2010 Mar 22;7(3-4):301–308. doi:10.1002/ppap.200900088YasudaHMiuraTKuritaHTakashimaKMizunoABiological evaluation of DNA damage in bacteriophages inactivated by atmospheric pressure cold plasma. Plasma Process Polym. 2010Mar 22;7(3-4):301308. doi:10.1002/ppap.200900088Open DOISearch in Google Scholar

Ye S, Song X, Liang JL, Zheng S, Lin Y. Disinfection of airborne spores of Penicillium expansum in cold storage using continuous direct current corona discharge. Biosyst Eng. 2012 Oct;113(2): 112–119. doi:10.1016/j.biosystemseng.2012.06.013YeSSongXLiangJLZhengSLinYDisinfection of airborne spores of Penicillium expansum in cold storage using continuous direct current corona discharge. Biosyst Eng. 2012Oct;113(2): 112119. doi:10.1016/j.biosystemseng.2012.06.013Open DOISearch in Google Scholar

Zimmermann JL, Dumler K, Shimizu T, Morfill GE, Wolf A, Boxhammer V, Schlegel J, Gansbacher B, Anton M. Effects of cold atmospheric plasmas on adenoviruses in solution. J Phys D Appl Phys. 2011 Dec 21;44(50):505201. doi:10.1088/0022-3727/44/50/505201ZimmermannJLDumlerKShimizuTMorfillGEWolfABoxhammerVSchlegelJGansbacherBAntonMEffects of cold atmospheric plasmas on adenoviruses in solution. J Phys D Appl Phys. 2011Dec 21;44(50):505201. doi:10.1088/0022-3727/44/50/505201Open DOISearch in Google Scholar

Ziuzina D, Boehm D, Patil S, Cullen PJ, Bourke P. Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors. PLoS One. 2015 Sep 21;10(9):e0138209. doi:10.1371/journal.pone.0138209 MedlineZiuzinaDBoehmDPatilSCullenPJBourkePCold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors. PLoS One. 2015Sep 21;10(9):e0138209. doi:10.1371/journal.pone.0138209Medline457707326390435Open DOISearch in Google Scholar

eISSN:
2544-4646
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Microbiology and Virology