Open Access

Optimizing civilian armored vehicle design with quality: A case study on lightweight ballistic protection using the DfA2 methodology

 and   
May 27, 2025

Cite
Download Cover

Abuzied, H, Senbel, H., Awad, M., Abbas, A., 2019. A review of advances in design for disassembly with active disassembly applications. International Journal Engineering Science and Technology, 23(3), 618-624. DOI: 10.1016/j.jestch.2019.07.003 Search in Google Scholar

ASTM. American Society for Testing Materials., 2023. ASTM E3113-23. Standard specification for ballistic-resistant vehicle door panels used by public safety agencies. DOI: 10.1520/E3113-23 Search in Google Scholar

Bao, J.-W., Wang, Y.-W., An, R., Cheng, H.-W., Wang, F.-C., 2022. Investigation of the mechanical and ballistic properties of hybrid carbon/aramid woven laminates. Defence Technology, 18(10), 1822-1833. DOI: 10.1016/j.dt.2021.09.009 Search in Google Scholar

Baraldi, E. C, Kaminski, P. C., 2018. Reference model for the implementation of new assembly processes in the automotive sector. Cogent Engineering, 5(1),1482984. DOI: 10.1080/23311916.2018.1482984 Search in Google Scholar

Benabdellah, A. C., Benghabrit, A., Bouhaddou, I., Benghabrit, O., 2020. Design for relevance concurrent engineering approach: integration of IATF 16949 requirements and design for X techniques. Research in Engineering Design 31, 323–351. DOI: 10.1007/s00163-020-00339-4 Search in Google Scholar

Boothroyd, G. 1994. Product design for manufacture and assembly. Computer-Aided Design, 26(7), 505–520. DOI: 10.1016/0010-4485(94)90082-5 Search in Google Scholar

Boothroyd, G., Dewhurst, P., Knight, W. A., 2010. Product Design for Manufacture and Assembly. CRC Press, 3rd Edition. Boca Raton, USA. DOI: 10.1201/9781420089288 Search in Google Scholar

BSI. British Standards Institution., 2018. PAS [Publicly Available Specification] 300:2018. Civilian armoured vehicle – Test methods for ballistic and blast protection. England. Search in Google Scholar

Candido, G. M., 2024. DfA2, Design for Assembly and Armoring, as the methodology for the manufacturing process of civil armored vehicles. Doctor Thesis in Mechanical Engineering, Polytechnic School, University of Sao Paulo, Brazil, 208 p. DOI: 10.11606/T.3.2024.tde-22112024-083125 Search in Google Scholar

Candido, G. M., Kaminski, P. C., 2023. Civilian armored vehicle operations in Brazil – challenges and production processes improvements: a qualitative survey. Production Engineering Archives, 29(2), 128-139. DOI: 10.30657/pea.2023.29.15 Search in Google Scholar

Candido, G. M., Kaminski, P. C., Medeiros, M. A., Araujo, A. G. L., 2022. Design for Excellence (DfX) in vehicle armoring operations: improvements and speed up a systematic literature review. Product, Management & Development, 20(1). DOI: 10.4322/pmd.2022.017 Search in Google Scholar

Chami, A., Benabbou, R., Taleb, M., Rais, Z., El Haji, M., 2021. Analysis of survey data on corrosion in the automotive industry, Materials Today Proceedings, 45, 7636-7642. DOI: 10.1016/j.matpr.2021.03.113 Search in Google Scholar

Dagman, A., Söderberg, R., 2012. Current state of the art on repair, maintenance and serviceability in Swedish automotive industry – a virtual product realization approach. In: Design for Innovative Value Towards a Sustainable Society. Springer, Dordrecht. DOI: 10.1007/978-94-007-3010-6_75 Search in Google Scholar

Davies, G., 2012. Materials for automobile bodies, Elsevier, 1st Edition, Great Britain. Search in Google Scholar

De Fazio, F., Bakker, C., Flipsen, B., Balkenende, R., 2021. The Disassembly Map: A new method to enhance design for product repairability. Journal of Cleaner Production, 320(128552). DOI: 10.1016/j.jclepro.2021.128552 Search in Google Scholar

Dewhurst, P., Abbatiello, N. 1996. Design for Service, In: Huang, G. Q. (eds) Design for X. Springer, Dordrecht, 298–317. DOI: 10.1007/978-94-011-3985-4 Search in Google Scholar

DoD. Department of Defense. 1985. NIJ Standard 0108.01 Ballistic Resistant Protective Materials. National Institute of Justice. USA. Search in Google Scholar

Du Bois, P., Chou, C. C., Fileta, B. B., Khalil, T. B., King, A. I., Mahmood, H. F., Merzt, H. J., Wismans, J., 2004. Vehicle Crashworthiness and Occupant Protection. American Iron Steel Institute. Southfield, Michigan, USA. Search in Google Scholar

Favi, C., M. Marconi, M. Germani, Mandolini, M., 2019. A design for disassembly tool oriented to mechatronic product manufacturing and recycling. Advanced Engineering Informatics, 39, 62–79. DOI: 10.1016/j.aei.2018.11.008 Search in Google Scholar

Goicoechea, I., Fenollera, M., 2012. Quality Management in the Automotive Industry. DAAAM - Danube Adria Association for Automation & Manufacturing International Scientific Book, 51, 619-632, Vienna, Austria, 2012. DOI: 10.2507/daaam.scibook.2012.51 Search in Google Scholar

Hąbek, P., Lavios, J.J., Grzywa, A., 2023. Lean Manufacturing Practices Assessment - Case Study of Automotive Company. Production Engineering Archives, 29 (3), 311-318. DOI: 10.30657/pea.2023.29.36 Search in Google Scholar

Happian-Smith, J., 2002. An Introduction to Modern Vehicle Design. Reed Educational and Professional Publishing Ltd.: Oxford, UK. Search in Google Scholar

Hesse, M., Weber, C., 2012. Manufacturability and Validation Methods in Passenger Car Development – an Industrial Case Study, International Design Conference, Design. Croatia. Search in Google Scholar

Hirz, M., Dietrich, W., Gfrerrer, A., Lang, J., 2013. Integrated computer-aided design in automotive development. Springer Berlin 1st Edition, Heidelberg, Germany, 466 p. DOI: 10.1007/978-3-642-11940-8 Search in Google Scholar

Hua, H., Li, Y., Wang, T., Dong, N., Li, W., Cao, J., 2023. Edge Computing with Artificial Intelligence: A Machine Learning Perspective. ACM Computing Surveys, 55(9), 1-35. DOI: 10.1145/3555802 Search in Google Scholar

Huang, G. Q. 1996. Design for X-Concurrent engineering imperatives. Springer, Dordrecht 1st Edition. DOI: 10.1007/978-94-011-3985-4 Search in Google Scholar

IATF. International Automotive Task Force., 2016. ISO/TS 16949 - Quality management system for organizations in the automotive industry. Genève. Search in Google Scholar

Juniani, A., Singgih, M., Karningsih, P., 2021. Design for Manufacturing, Assembly, and Reliability on Product Redesign: Literature Review and Research Direction. In: 2nd Asia Pacific International Conference on Industrial Engineering and Operations Management. DOI: 10.46254/AP02.20210039 Search in Google Scholar

Kaluza, A., Kleemann, S., Broch, F., Herrmann, C., Vietor, T., 2016. Analyzing Decision-making in Automotive Design towards Life Cycle Engineering for Hybrid Lightweight Components. Procedia CIRP, 50, 825–830. DOI: 10.1016/j.procir.2016.05.029 Search in Google Scholar

Knop, K., Gejdos, P., 2024. Prioritizing product quality problems using quality management tools. System Safety: Human - Technical Facility – Environment, 6 (1), 138-153. DOI: 10.2478/czoto-2024-0016 Search in Google Scholar

Kuo, T. C., Huang, S. H., Zhang, H. C., 2001. Design for manufacture and design for ‘X’: concepts, applications, and perspectives. Computers & Industrial Engineering, 41(3), 241-260. DOI: 10.1016/S0360-8352(01)00045-6 Search in Google Scholar

Louda, P., 2007. Applications of thin coatings in automotive industry. Journal of Achievements in Materials and Manufacturing Engineering, 24 (1). Search in Google Scholar

Maltzman, R., Rembis, K. M., Donisi, M., Farley, F., Sanchez, R. C., Ho, A. Y., 2005. Design for Networks-The Ultimate Design for X. Bell Labs Technical Journal, 9(4), 5-23. DOI: 10.1002/bltj.20057 Search in Google Scholar

Mayyas, A., Qattawi, A., Omar, M., Shan, D., 2012. Design for sustainability in automotive industry: A comprehensive review. Renewable and Sustainable Energy Reviews, 16(4), 1845-1862. DOI: 10.1016/j.rser.2012.01.012 Search in Google Scholar

Mesa, J. A., 2023. Design for circularity and durability: an integrated approach from DFX guidelines. Res Engineering Design, 34, 443-460. DOI:10.1007/s00163-023-00419-1 Search in Google Scholar

Morris, A., Halpern, M., Setchi, R., Prickett, P., 2015. Assessing the challenges of managing product design change through-life, Journal of Engineering Design, 27, 25-49. DOI: 10.1080/09544828.2015.1085498. Search in Google Scholar

Naiju, C. D., 2021. DFMA for product designers: A review. Materials Today: Proceedings, 46 (17), 7473–7478. DOI: 10.1016/j.matpr.2021.01.134 Search in Google Scholar

Pacana, A., Czerwińska, K., 2020. Improving the quality level in the automotive industry. Production Engineering Archives, 26, 162-166. DOI: 10.30657/pea.2020.26.29 Search in Google Scholar

Pastor, L. R., Mesa, J. A., 2023. Proposing an integrated indicator to measure product repairability. Journal of Cleaner Production, 395(136434). DOI: 10.1016/j.jclepro.2023.136434 Search in Google Scholar

Pellegrini, F., 2020. An armored truck cab design – case study: investigation of selected steel grades. KTH Royal Institute of Technology, School of Industrial Engineering and Management, Degree Project in Materials Science and Engineering, Stockholm, Sweden, 162 p. Search in Google Scholar

Rosenqvist, M., L. Lindkvist, K. Wärmefjord, Söderberg, R., 2024. Simulation of variation for manual assembly when mis-constraining occurs. Journal of Engineering Design, 35(1), 54-88. DOI: 10.1080/09544828.2023.2290925 Search in Google Scholar

Sanches Jr., L. M., M. S. Filho and G. F. Batalha., 2008. Automotive body-in-white dimensional stability through pre-control application in the sub-assembly process. Journal of Achievements in Materials and Manufacturing Engineering 31(2). Search in Google Scholar

Sarvankar, S. G., Yewale, S. N., 2019. Additive Manufacturing in Automobile Industry. IJRAME, International Journal of Research in Aeronautical and Mechanical Engineering 7(4), 01–10. Search in Google Scholar

Sassaneli, C., Urbinati, A., Rosa, P., Chiaroni, D., Terzi, S., 2020. Addressing circular economy through design for X approaches: A systematic literature review. Computers in Industry, 120 (103245). DOI: 10.1016/j.compind.2020.103245 Search in Google Scholar

Shim, G.-I., Kim, S.-H., Ahn, D.-L., Park, J.-K, Jin, D.-H., Chung D.-T., Choi, S.-Y., 2016. Experimental and numerical evaluation of transparent bulletproof material for enhanced impact-energy absorption using strengthened-glass/polymer composite. Composites Part B: Engineering, 97, 150-161. DOI: 10.1016/j.compositesb.2016.04.078 Search in Google Scholar

Suresh, P., Ramabalan, S., Natarajan, U., 2015. Integration of DFE and DFMA for the sustainable development of an automotive component. International Journal of Sustainable Engineering, 9(2), 107-118. DOI: 10.1080/19397038.2015.1096313 Search in Google Scholar

Stylidis, K., Wickman, C., Söderberg, R., 2020. Perceived quality of products: a framework and attributes ranking method. Journal of Engineering Design, 31 (1), 37–67. DOI: 10.1080/09544828.2019.1669769 Search in Google Scholar

U.S. Department of Energy, Energy Efficiency & Renewable Energy, Vehicle Technologies Office., 2010. Fact #621: Gross vehicle weight vs. empty vehicle weight. https://www.energy.gov/eere/vehicles/fact-621-may-3-2010-gross-vehicle-weight-vs-empty-vehicle-weight. Search in Google Scholar