[
Kamach, O., Piétrac, L., Niel, É., 2006. Multi-model approach to discrete events systems: Application to operating mode management. Math. Comput. Simul., 70(5–6), 394–407. DOI: 10.1016/j.matcom.2005.11.008.
]Search in Google Scholar
[
Ghosh, S., Samanta, G., De La Sen, M., 2021. Multi-Model Approach and Fuzzy Clustering for Mammogram Tumor to Improve Accuracy. Computation, 9(5), 59. DOI: 10.3390/computation9050059.
]Search in Google Scholar
[
Elqabli, Z., Chater, Y., Kamach, O., 2022. Operation modes scheduling: a formal framework for identification of the compatible state, 14th International Colloquium of Logistics and Supply Chain Management (LOGISTIQUA), IEEE, Tanger, 1-6. DOI: 10.1109/LOGISTIQUA 55056.2022.9938021.
]Search in Google Scholar
[
Kamach, O., Chafik, S., Piétrac, L., 2002. Representation of a reactive system with different models. Proc. IEEE Int. Conf. Syst. Man Cybern.,4, 263–267. DOI: 10.1109/icsmc.2002.1173293.
]Search in Google Scholar
[
Kamach, O., Chafik, S., Piétrac, L., Niel, É., 2005. Supervisory uniqueness for operating mode systems. IFAC, 16(1). DOI: 10.3182/20050703-6-cz-1902.01443.
]Search in Google Scholar
[
Phan, L.T.X., Chakraborty, S., Lee, I., 2009. Timing analysis of mixed time/event-triggered multi-mode systems. Proc. - Real-Time Syst. Symp., 271–280. DOI: 10.1109/RTSS.2009.24.
]Search in Google Scholar
[
Phan, L.T.X., Lee, I., Sokolsky, O., 2010. Compositional analysis of multi-mode systems. Proc. - Euromicro Conf. Real-Time Syst., 197–206. DOI: 10.1109/ECRTS.2010.35.
]Search in Google Scholar
[
Faraut, G., Piétrac, L., Niel, É., 2009. Formal approach to multimodal control design: Application to mode switching. IEEE Trans. Ind. Informatics, 5(4), 443–453. DOI: 10.1109/TII.2009.2028135.
]Search in Google Scholar
[
Faraut, G., Piétrac, L., Niel, É., 2008. Identification of incompatible states in mode switching. IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA, 121–128. DOI: 10.1109/ETFA.2008.4638382.
]Search in Google Scholar
[
Kamach, O., Niel, É., Piétrac, L., 2007. Repulsive / Attractive Discrete State Space Sets for Switching Management. Studies in Informatics and Control, 16(1), 83.
]Search in Google Scholar
[
El ghadouali, A., Kamach, O., Amami, B., 2012. Static approach for switching between different operating modes. 2nd Int. Conf. Commun. Comput. Control Appl. CCCA. DOI: 10.1109/CCCA.2012.6417878.
]Search in Google Scholar
[
Kamach, O., 2004. Approche multi-modèle pour les systèmes à événements discrets: application à la gestion des modes de fonctionnement.” Lyon, INSA, France.
]Search in Google Scholar
[
Goossens, J., Richard, P., 2013. Partitioned scheduling of multimode multiprocessor real-time systems with temporal isolation. ACM Int. Conf. Proceeding Ser., 297–305. DOI: 10.1145/2516821.2516822.
]Search in Google Scholar
[
Nandola, N.N., Bhartiya, S., 2008. A multiple model approach for predictive control of nonlinear hybrid systems. J. Process Control, 18(2), 131–148. DOI: 10.1016/j.jprocont.2007.07.003.
]Search in Google Scholar
[
Abdallah, I., Gehin, L., Ould Bouamama B., 2018. Event driven Hybrid Bond Graph for Hybrid Renewable Energy Systems part I: Modelling and operating mode management. Int. J. Hydrogen Energy, 22088–22107. DOI: 10.1016/j.ijhydene.2017.10.144.
]Search in Google Scholar
[
El ghadouali, A., Kamach, O., Amami, B., 2013. Safe switching of discrete events systems: Application to operating mode management. in Proceedings of 2013 International Conference on Industrial Engineering and Systems Management (IESM), IEEE, 1–7.
]Search in Google Scholar
[
Azzabi, O., Ben Njima, C., Messaoud, H., 2017a. Modeling a system with hybrid automata and multi - Models, Int. Conf. Control. Autom. Diagnosis, ICCAD, 87–90. DOI: 10.1109/CADIAG.2017.8075636. Azzabi, O., Ben Njima, C., Messaoud, H., 2017b. New approach of diagnosis with hybrid automata, Int. Conf. Control. Autom. Diagnosis (ICCAD), 298–302. DOI: 10.1109/CADIAG.2017.8075674.
]Search in Google Scholar
[
Azzabi, O., Ben Njima, C., Messaoud, H., 2016. Diagnosis of a dynamic hybrid system by hybrid timed automata. Int. Conf. Control. Decis. Inf. Technol (CoDIT), 618–623. DOI: 10.1109/CoDIT.2016.7593633.
]Search in Google Scholar
[
Yang, Z., Aoki, T., Tan, Y., 2019. Modeling the required indoor temperature change by hybrid automata for detecting thermal problems. Proc. IEEE Pacific Rim Int. Symp. Dependable Comput. PRDC, vol. 2018-December, 135–144. DOI: 10.1109/PRDC.2018.00024.
]Search in Google Scholar
[
Abdallah, I., Gehin, L., Ould Bouamama B., 2017. On-line robust graphical diagnoser for hybrid dynamical systems. Eng. Appl. Artif. Intell., 69, 36–49. DOI: 10.1016/j.engappai.2017.12.002.
]Search in Google Scholar
[
Mrabet, W., Ladhari, T., 2013. Towards a multi_agent system for manufacturing reconfiguration, 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), 1-6, IEEE.
]Search in Google Scholar
[
Dou, C.X., Liu, B., 2014. Hierarchical management and control based on MAS for distribution grid via intelligent mode switching. Int. J. Electr. Power Energy Syst., 54, 352–366. DOI: 10.1016/j.ijepes.2013.07.029.
]Search in Google Scholar
[
Borangiu, T., Rəileanu, S., Berger, T., Trentesaux, D., 2015. Switching mode control strategy in manufacturing execution systems. Int. J. Prod. Res., 53(7), 1950–1963. DOI: 10.1080/00207543.2014.935825.
]Search in Google Scholar
[
Yu, J., Dou, C., Li, X., 2016. MAS-Based Energy Management Strategies for a Hybrid Energy Generation System. IEEE Trans. Ind. Electron., 63(6), 3756–3764. DOI: 10.1109/TIE.2016.2524411.
]Search in Google Scholar
[
Dou, C.X., Wang, W.Q., Hao, D.W., Bin Li, X., 2015. MAS-based solution to energy management strategy of distributed generation system. Int. J. Electr. Power Energy Syst., 69, 354–366. DOI: 10.1016/j.ijepes. 2015.01.026.
]Search in Google Scholar
[
An, Y., Wu, N., 2018. Scheduling of crude oil operations for minimizing the usage of simultaneously-charging-and-feeding mode, 15th IEEE Int. Conf. Networking, Sens. Control (ICNSC), 1–6. DOI: 10.1109/ICNSC. 2018.8361347.
]Search in Google Scholar
[
An, Y., Wu, N.Q., Hon, C.T., Li, Z.W., 2017. Scheduling of crude oil operations in refinery without sufficient charging tanks using petri nets. Appl. Sci., 7(6). DOI: 10.3390/app7060564.
]Search in Google Scholar
[
Outafraout, K., Nait-Sidi-Moh, A., 2017. Modeling and simulation of a multimodal transportation system based on hybrid Petri nets, 14th International Multi-Conference on Systems, Signals & Devices (SSD), IEEE, 413–418.
]Search in Google Scholar
[
Ge, Y., Zhu, F., Ling, X., Liu, Q., 2019. Safe Q-Learning Method Based on Constrained Markov Decision Processes. IEEE Access, 7, 165007–165017. DOI: 10.1109/ACCESS.2019.2952651.
]Search in Google Scholar
[
Oroojlooy, A., Hajinezhad, D., 2022. A review of cooperative multi-agent deep reinforcement learning. Appl. Intell., 1–81. DOI: 10.1007/s10489-022-04105-y.
]Search in Google Scholar
[
Yang, S., Xu, Z., 2022. Intelligent scheduling and reconfiguration via deep reinforcement learning in smart manufacturing. Int. J. Prod. Res., 60(16), 4936–4953. DOI: 10.1080/00207543.2021.1943037.
]Search in Google Scholar
[
Li, X., Chen, G., Wu, G., Sun, Z., Chen, G., 2023. Research on multi-Agent D2D Communication Resource Allocation Algorithm Based on A2C. Electron.,12(2). DOI: 10.3390/electronics12020360.
]Search in Google Scholar