Open Access

A Study on Carbonation Depth Prediction for Concrete Made with GBFS Cement and Fa Addition


Cite

[1] He T., Xu R., Chen Ch., Yang L., Yang R., Da Y.: Carbonation modeling analysis on carbonation behavior of sand autoclaved aerated concrete. Constr. Build. Mater. 2018, Vol. 189, pp. 102-108. DOI:10.1016/j. conbuildmat.2018.08.199. Search in Google Scholar

[2] Aleksander M., Thomas M.: Service life prediction and performance testing – Current developments and practical applications. Cem. Concr. Res. 2015, Vol. 78, pp. 155-164. DOI:10.1016/j.cemconres.2015.05.013.10.1016/j.cemconres.2015.05.013 Search in Google Scholar

[3] Marques P.F., Chastre C., Nunes A.: Carbonation service life modelling of RC structures for concrete with Portland and blended cements, Cem. Concr. Compos. 2013, Vol. 37, pp. 171-184. DOI:10.1016/j.cemconcomp.2012.10.007.10.1016/j.cemconcomp.2012.10.007 Search in Google Scholar

[4] Oner A., Akyuz S., An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cem. Concr. Compos. 2007, Vol. 29, pp. 505-514. Search in Google Scholar

[5] Ekolu S.: Model for practical prediction of natural carbonation in reinforced concrete: Part 1-formulation. Cem. Concr. Compos. 2018, Vol. 86, pp. 40-56. DOI:10.1016/j. cemconcomp. 2017.10.006. Search in Google Scholar

[6] Guiglia M., Taliano M.: Comparison of carbonation depths measured on infield exposed existing r.c. structures with predictions made using fib-Model Code 2010, Cem. Concr. Compos. 2013, Vol. 38, pp. 92-108. DOI:10.1016/j. cemconcomp. 2013.03.014. Search in Google Scholar

[7] Czarnecki L., Woyciechowski P.: Modelling of concrete carbonation; is it a process unlimited in time and restricted in space? Bulletin of the Polish Academy of Sciences Technical Sciences 2015, Vol. 63, No. 1, DOI: 10.1515/bpasts-2015-00062. Search in Google Scholar

[8] Czarnecki L., Woyciechowski P.: Prediction of the reinforced concrete structure durability under the risk of carbonation and chloride aggression. Bulletin of the Polish Academy of Sciences Technical Sciences 2013, Vol. 61, No. 1, pp. 173-181, DOI: 10.2478/bpast.2013.0016. Search in Google Scholar

[9] Woyciechowski P., Woliński P., Adamczewski G.: Prediction of Carbonation Progress in Concrete Containing Calcareous Fly Ash Co-Binder. Materials 2019, Vol. 12, 2665. DOI:10.3390/ma12172665.10.3390/ma12172665674758231438627 Search in Google Scholar

[10] Fagerlund G.: Durability of Concrete Structures, Arkady, Warszawa 1997 (in Polish). Search in Google Scholar

[11] Zhang X., Zhou X., Zhou H., Gao K., Wang Z.: Studies on forecasting of carbonation depth of slag high performance concrete considering gas permeability. Applied Clay Science 2013, Vol. 79, pp. 36-40. DOI:10.1016/j. clay.2013.02.020. Search in Google Scholar

[12] DeSchutter G., Audenaert K.: Evaluation of water absorption of concrete as a measure for resistance against carbonation and chloride migration. Mater Struct. 2004, Vol. 37, 591-6. Search in Google Scholar

[13] Roziere E., Loukili, A., Cussigh F.: A performance based approach for durability of concrete exposed to carbonation. Constr. Build. Mater. 2009, Vol. 23, No. 1, pp. 190-199. DOI:10.1016/j. conbuildmat.2008.01.006. Search in Google Scholar

[14] CEN – European Committee for Standardization, EN 206. Concrete – Specification, Performance, Production and Conformity. Brussels, Belgium, 2013. Search in Google Scholar

[15] Harrison T.A., Equivalent durability concept. Workshop proceeding no. 8: Nordic Exposure sites – input to revision of EN 206 – 1, Hirtshals, Denmark, November 12-14, 2008. Search in Google Scholar

[16] Fib, Model Code for Concrete Structures 2010 – International Federation for Structural Concrete. DOI: 10.1002/9783433604090, 2013.10.1002/9783433604090 Search in Google Scholar

[17] Final Draft FprCEN/TS 12390-12: Testing hardened concrete – Part 12: Determination of the potential carbonation resistance of concrete: Accelerated carbonation method. CEN 2010. Search in Google Scholar

[18] EN 12390-12: Testing hardened concrete – Part 12: Determination of the potential carbonation resistance of concrete: Accelerated carbonation method. CEN 2020. Search in Google Scholar

[19] Gruyaert E., Philip V.H., Nele D.B.: Carbonation of slag concrete: effect of the cement replacement level and curing on the carbonation coefficient – effect of carbonation on the pore structure, Cem. Concr. Compos. 2013, Vol. 35 (1), pp. 39-48. DOI:10.1016/j.cemconcomp.2012.08.024.10.1016/j.cemconcomp.2012.08.024 Search in Google Scholar

[20] Sanjuán M.A., Piñeiro A., Rodríguez O.: Ground granulated blast furnace slag efficiency coefficient (k value) in concrete. Applications and limits, Mater. Constr. 2011, Vol. 61 (302), pp. 303-313. DOI:/10.3989/mc. 2011. 60410.1988-3226. Search in Google Scholar

[21] Ekolu S.: A review on efects of curing, sheltering, and CO2 concentration upon natural carbonation of concrete. Constr. Build. Mater. 2016, Vol. 127, pp. 306-320. DOI:10.1016/j.conbuildmat.2016.09.056.10.1016/j.conbuildmat.2016.09.056 Search in Google Scholar

[22] Zhang L.M., Jiang W.H.: A study on carbonation of concrete in natural condition and its correlation with artificial accelerated carbonation, J. Xi’an Inst. Metall. Constr. Eng. 1990, Vol. 22 (3), pp. 207-214. Search in Google Scholar

[23] Raport CEN/TR 16639:2014: Use of k-value concept, equivalent concrete performance concept and equivalent performance of combinations concept. Search in Google Scholar

[24] Younsi A., Turcry Ph., Aït-Mokhtar A., Staquet S.: Accelerated carbonation of concrete with high content of mineral additions: Effect of interactions between hydration and drying. Cem. Concr. Res., 2013, Vol. 43, pp. 25-33. DOI:10.1016/j.cemconres.2012.10.008.10.1016/j.cemconres.2012.10.008 Search in Google Scholar

[25] Sisomphon K., Franke L.: Carbonation rates of concrete containing high volume of pozzolanic materials. Cem. Concr. Res., 2007, Vol. 37, No. 2, pp. 1647-1653, DOI: 10.1016/j.cemconres. 2007.08.014. Search in Google Scholar

[26] Deja J.: Carbonation aspects of alkali activated slag mortars and concretes, Silicates Industriels 2002, Vol. 67 (3/4), pp. 37-42. Search in Google Scholar

[27] Giergiczny Z., Glinicki M., Sokołowski M., Zielinski M.: Air void system and frost-salt scaling of concrete containing slag-blended cement. Constr. Build. Mater., 2009, Vol. 23, pp. 2451-2456. DOI:10.1016/j.conbuildmat.2008.10.001.10.1016/j.conbuildmat.2008.10.001 Search in Google Scholar

[28] Wawrzeńczyk J.: The methods of testing and predicting of concrete freeze-thaw durability. Monography M92, Kielce University of Technology, Kielce 2017 (in polish). PL ISSN 1897-2691. Search in Google Scholar

[29] Song H.W., Saraswathy V.: Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag – an overview. Journal of Hazardous Materials 2006, Vol. 138, 226-233. DOI:10.1016/j. jhazmat.2006.07.022. Search in Google Scholar

[30] Sisomphon K., Copuroglu O., Fraaij A.L.A.: Development of blast-furnace slag mixtures against frost salt attack. Cem. Concr. Compos. 2010, Vol. 32:630-8. DOI:10.1016/j.cemconcomp.2010.06.001.10.1016/j.cemconcomp.2010.06.001 Search in Google Scholar

[31] Lolini F., Redaelli E.: Carbonation of blended cement concretes after 12 years of natural exposure. Constr. Build. Mater. 2021, Vol. 276. DOI.org/10.1016/j.conbuildmat. 2020. 122122.10.1016/j.conbuildmat.2020.122122 Search in Google Scholar

eISSN:
2657-6902
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Architecture and Design, Architecture, Architects, Buildings, Construction, Materials, Engineering, Introductions and Overviews, other