1. bookVolume 12 (2012): Issue 4 (August 2012)
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
access type Open Access

Design of Experiment for Measurement of Langevin Function

Published Online: 13 Aug 2012
Volume & Issue: Volume 12 (2012) - Issue 4 (August 2012)
Page range: 121 - 127
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Design of Experiment for Measurement of Langevin Function

The presented study focuses on a confrontation of the theory of regression models and theory of experiment with the real situation of determining properties of magnetic (nano)materials. Their magnetic properties can be deduced by measuring their magnetization, being the fundamental magnetic quantity of an arbitrary (nano)material. The results of the magnetization measurements determine the unknown parameters of a known nonlinear function that characterizes the (nano)material under investigation. Knowledge of the values of the uknkown parameters enables to decide whether the (nano)material is suitable or not for a particular application. Thus, in this work, we present a possible approach how to estimate the unknown parameters of the nonlinear function by the regression models, taking into account a relevant linearization criterion. Then, we suggest an appropriate design for the measurement to get better estimators of the parameters.

Keywords

Bates, D. M., Watts, D. G. (2008). Nonlinear regression analysis and its applications, Wiley.Search in Google Scholar

Dormann, J. L., Fiorani, D., Tronc, E. (1997). Magnetic relaxation in fine-particle systems, In: Advances in Chemical Physics, I. Prigogine, John Wiley and Sons, New York, Vol. 98, 283-494.Search in Google Scholar

Fedorov, V. V. (1972). Theory of optimal experiments, Academic Press.Search in Google Scholar

Kluchova, K., Zboril, R., Tucek, J., Pecova, M., Zajoncova, L., Safarik, I., Mashlan, M., Markova, I., Jancik, D., Sebela, M., Bartonkova, H., Bellesi, V., Novak, P., Petridis, D. (2009). Superparamagnetic maghemite nanoparticles from solid-state synthesis - Their functionalization towards peroral MRI contrast agent and magnetic carrier for trypsin immobilization. Biomaterials 30, 2855-2863.10.1016/j.biomaterials.2009.02.023Search in Google Scholar

Kodama, R. H. (1999). Magnetic nanoparticles. J. Magn. Magn. Mater. 200, 359-372.10.1016/S0304-8853(99)00347-9Search in Google Scholar

Kubáček, L., Tesaříková, E. (2009). Weakly nonlinear regression models, UP Olomouc.Search in Google Scholar

Kubáčková, L., Kubáček, L., Kukuča, J. (1987). Probability and statistics in geodesy and geophysics, Elsevier, Amsterdam-Oxford-New York-Tokyo.Search in Google Scholar

Machala, L., Tucek, J., Zboril, R. (2011). Polymorphous transformations of nanometric iron(III) oxide: A review. Chem. Mater. 23, 3255-3272.10.1021/cm200397gSearch in Google Scholar

Montgomery, D. C., Peck, E. A., Vining, G. G. (2006). Introduction to linear regression analysis, 4th ed., John Wiley and Sons, Inc., Hoboken, New Jersey.Search in Google Scholar

O'Handley, R. C. (2000). Modern magnetic materials: Principles and applications, John Wiley and Sons, New York.Search in Google Scholar

Pázman, A. (1993). Nonlinear statistical models, Kluwer Academic Publisher, Dodrecht-Boston-London and Ister Science Press, Bratislava.10.1007/978-94-017-2450-0Search in Google Scholar

Poole, Ch.P., Owens, F. J. (2003). Introduction to nanotechnology, John Wiley & Sons, New Jersey.Search in Google Scholar

Strbak, O. Kopcansky, P., Frollo, I. (2011). Biogenic magnetite in humans and new magnetic resonance hazard questions.Measurement Science Review, Volume 11, No. 3., 85-91.10.2478/v10048-011-0014-1Search in Google Scholar

Tucek, J., Zboril, R., Petridis, D. (2006). Maghemite nanoparticles by view of Mössbauer spectroscopy. J. Nanosci. Nanotechnol. 6, 926-947.10.1166/jnn.2006.18316736748Search in Google Scholar

Tucek, J., Zboril, R., Namai, A., Ohkoshi, S. (2010). ε-Fe2O3: An advanced nanomaterial exhibiting giant coercive field, millimeter-wave ferromagnetic resonance, and magnetoelectric coupling. Chem. Mater. 22, 6483-6505.10.1021/cm101967hSearch in Google Scholar

Tučková, M., Tuček, P., Tuček, J., Kubáček, L. (2010). Search for optimal way to precisely evaluate magnetic response of ironoxide based nanomaterials-a new statistically-based approach. Nanocon 2010, 2nd International Conference, 478-484.Search in Google Scholar

Wynn, H. P. (1972). Results in the theory and construction of Doptimum experimental designs. Journal of the Royal Statistical Society, Vol. 34, No. 2, 133-147.Search in Google Scholar

Zboril, R., Mashlan, M., Petridis, D. (2002). Iron(III) oxides from thermal processes-synthesis, structural and magnetic properties, Mossbauer spectroscopy characterization and applications. Chem. Mater. 14, 969-982.10.1021/cm0111074Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo