1. bookVolume 10 (2010): Issue 1 (February 2010)
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Open Access

Pattern classification of Myo-Electrical signal during different Maximum Voluntary Contractions: A study using BSS techniques

Published Online: 15 Feb 2010
Volume & Issue: Volume 10 (2010) - Issue 1 (February 2010)
Page range: 1 - 6
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Pattern classification of Myo-Electrical signal during different Maximum Voluntary Contractions: A study using BSS techniques

The presence of noise and cross-talk from closely located and simultaneously active muscles is exaggerated when the level of muscle contraction is very low. Due to this the current applications of surface electromyogram (sEMG) are infeasible and unreliable in pattern classification. This research reports a new technique of sEMG using Independent Component Analysis (ICA). The technique uses blind source separation (BSS) methods to classify the patterns of Myo-electrical signals during different Maximum Voluntary Contraction (MVCs) at different low level finger movements. The results of the experiments indicate that patterns using ICA of sEMG is a reliable (p<0.001) measure of strength of muscle contraction even when muscle activity is only 20% MVC. The authors propose that ICA is a useful indicator of muscle properties and is a useful indicator of the level of muscle activity.

Keywords

Basmajian, J. V., De Luca, C. J. (1985). Muscles Alive: Their Functions Revealed by Electromyography (5th ed.). Baltimore, US: Williams & Wilkins Publishers.Search in Google Scholar

Schlenzig, J., Hunter, E., Jain, R. (1994). Vision based hand gesture interpretation using recursive estimation. In Twenty-Eighth Asilomar Conference on Signals, Systems and Computers. IEEE, 1264-1271.10.1109/ACSSC.1994.471662Search in Google Scholar

Cheron, G., Draye, J. P., Bourgeios, M., Libert, G. (1996). A dynamic neural network identification of electromyography and arm trajectory relationship during complex movements. IEEE Trans. Biomed. Eng., 43, 552-558.10.1109/10.488803Search in Google Scholar

Pavlovic, V. I., Sharma, R., Huang, T. S. (1997). Visual interpretation of hand gestures for human computer interaction. IEEE Trans. Pattern Anal. Mach. Intell., 19, 677-695.10.1109/34.598226Search in Google Scholar

Wheeler, K. R., Jorgensen, C. C. (2003). Gestures as input: neuroelectric joysticks and keyboards. IEEE Pervasive Comput., 2 (2), 56-61.10.1109/MPRV.2003.1203754Search in Google Scholar

Koike, Y., Kawato, M. (1996). Human interface using surface electromyography signals. Electron. Comm. Jpn., 79 (9), 15-22.10.1002/ecjc.4430790902Search in Google Scholar

Doerschuk, P. C., Gustafson, D. E., Willsky, A. S. (1983). Upper extremity limb function discrimination using EMG signal analysis. IEEE Trans. Biomed. Eng., 30(1), 18-28.10.1109/TBME.1983.325162Search in Google Scholar

Farry, K. A., Walker, I. D., Baraniuk, R. G. (1996). Myoelectric teleoperation of a complex robotic hand. IEEE Trans. Robot. Autom., 12 (5), 775-788.10.1109/70.538982Search in Google Scholar

McKeown, M. J. (2000). Cortical activation related to arm-movement combinations. Muscle Nerve, 23 (9), S19-S25.10.1002/1097-4598(2000)999:9<::AID-MUS5>3.0.CO;2-LSearch in Google Scholar

McKeown, M. J., Radtke, R. (2001). Phasic and tonic coupling between EEG and EMG demonstrated with independent component analysis. J. Clin. Neurophysiol., 18 (1), 45-57.10.1097/00004691-200101000-00009Search in Google Scholar

Nakamura, H., Yoshida, M., Kotani, M., Akazawa, K., Moritani, T. (2004). The application of independent component analysis to the multichannel surface electromyographic signals for separation of motor unit action potential trains. J. Electromyogr. Kinesiol., 14 (4), 423-432.10.1016/j.jelekin.2004.01.004Search in Google Scholar

Peleg, D., Braiman, E., Yom-Tov, E., Inbar, G. F. (2002). Classification of finger activation for use in a robotic prosthesis arm. IEEE Trans. Neural Sys. Rehab. Eng., 10 (4), 290-293.10.1109/TNSRE.2002.80683112611366Search in Google Scholar

Naik, G. R., Kumar, D. K., Singh, V. P., Palaniswami, M. (2006). SEMG for identifying hand gestures using ICA. In Workshop on Biosignal Processing and Classification at 2nd International Conference on Informatics in Control, Automation and Robotics, August 2006. Setubal, Portugal, 61-67.Search in Google Scholar

Hyvarinen, A., Karhunen, J., Oja, E. (2001). Independent Component Analysis (3rd ed.). New York: John Wiley.10.1002/0471221317Search in Google Scholar

Bell, A., Sejnowski, T. (1995). An information - maximisation approach to blind separation and blind deconvolution. Neural Comput., 7, 1129-1159.10.1162/neco.1995.7.6.11297584893Search in Google Scholar

Jung, T., Makeig, S., Lee, T., McKeon, M., Brown, G., Bell, A., Sejnowski, T. (2000). Independent component analysis of biomedical signals. In Second International Workshop on Independent Component Analysis and Blind Signal Separation, 633-644.Search in Google Scholar

Makeig, S., Jung, T., Bell, A., Sejnowski, T. (1996). Independent component analysis of electro-encephalographic data. Adv. Neural Inf. Proc., 8, 145-151.Search in Google Scholar

Naik, G. R., Kumar, D. K., Weghorn, H. (2007). Performance comparison of ICA algorithms for isometric hand gesture identification using surface EMG. In 3rd International Conference on Intelligent Sensors, Sensor Networks and Information Processing, 3-6 December 2007, 613-618.10.1109/ISSNIP.2007.4496913Search in Google Scholar

Fridlund, A. J., Cacioppo, J. T. (1986). Guidelines for human electromyographic research. Psychophysiol., 23 (5), 567-589.10.1111/j.1469-8986.1986.tb00676.x3809364Search in Google Scholar

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., Tatham, R. L. (2006). Multivariate Data Analysis. Prentice Hall.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo