Cite

Andrus C.F., Reynard G.B., Wade B.L. 1942. Relative resistance of tomato varieties, selections and crosses to defoliation by Alternaria and Stemphylium. US Dep. Agric Circ. 652.Search in Google Scholar

Bai Y., Huang C-H., Van der Huist R., Meijer-Dekens F., Bonnema G., Lindhout P. 2003. QTLs for Tomato Powdery Mildew Resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 Colocalize with Two Qualitative Powdery Mildew Resistance Genes. MPMI 16(2): 169-176.10.1094/MPMI.2003.16.2.16912575751Search in Google Scholar

Ballvora A., Schornack S., Baker B. J., Ganal M., Bonas U., Lahaye B.J. 2001. Chromosome landing at the tomato Bs4 locus. Mol. Genet. Genomics 266: 639-645. [DOI: 10.1007/s004380100583]10.1007/s00438010058311810236Search in Google Scholar

Barillas A.C., Mejia L., Sanchez-Perez A., Maxwell D. 2008. CAPS and SCAR markers for detection of I-3 gene introgresion for resistance to Fusarium oxysporum f. sp. lycopersici race 3. TGC Reports 58: 11-17.Search in Google Scholar

Barone A., Di Matteo A., Carputo D., Fruscinate L. 2009. High-throughput genomics enhances tomato breeding efficiency. Current Genomics 10: 1-9. [DOI: 10.2174/138920209787581226]10.2174/138920209787581226269983919721805Search in Google Scholar

Barone A., Chiusano M.L., Ercolano M.R., Giuliano G., Grandillo S., Frusciante L. 2008. Structural and functional genomics of tomato. International Journal of Plant Genomics Volume 2008, Article ID 820274, p. 12. [DOI:10.1155/2008/820274]10.1155/2008/820274224607418317508Search in Google Scholar

Bashi E., Pilowski M., Rotem J. 1973. Resistance in tomatoes to Stemphylium floridanum and S. botryosum f. sp. lycopersici. Phytopathology 63: 1542-1544.Search in Google Scholar

Beckmann J.S., Soller M. 1986. Restriction fragment length polymorphism in plant genetic improvement. Oxford Surveys of Plant Molecular and Cell Biology 3: 197-250.10.32747/1986.7598901.bardSearch in Google Scholar

Behare J., Laterrot H., Sarfatti M., Zamir D. 1991. RFLP mapping of the Stemphylium resistance gene in tomato. Molecular Plant-Microbe Interactions 4: 489-492.10.1094/MPMI-4-489Search in Google Scholar

Bernatzky R. 1993. Genetic Mapping and Protein Product Diversity of the Self-Incompatibility Locus in Wild Tomato (Lycopersicon peruvianum). Biochemical Genetics. Vol. 31, 3-4: 173-184. [DOI: 10.1007/BF02399924]10.1007/BF023999248363556Search in Google Scholar

Boyer J.S. 1982. Plant Productivity and environment. Science 218: 443-448. [DOI:10.1126/science.218.4571.443]10.1126/science.218.4571.44317808529Search in Google Scholar

Butler L. 1936. Inherited characters in the tomato. J. Hered. 27: 25-26.Search in Google Scholar

Cahill D. J., Schmidt D.H. 2004. Use of marker-assisted selection in a product development breeding program. In T. Fischer (ed.) New directions for a diverse planet. Proc. 4th Int. Crop Sci. Congress, Brisbane, QLD, The Regional Institute Ltf. Gosford, NSW, Australia.Search in Google Scholar

Carland F.M., Staskawicz B.J. 1993. Genetic characterization of the Pto locus of tomato: semidominance and cosegregation of resistance to Pseudomonas syringae pathovar tomato and sensitivity to the insecticide fenthion. Molecular and General Genetics 239: 17-27. [DOI: 10.1007/BF00281596]10.1007/BF002815968510645Search in Google Scholar

Castro A.P., Blanca J.M., Diez M.J., Vinals F.N. 2007. Identyfikation of a CAPS marker tighly linked to the Tomato yellow leaf curl disease resistance gene Ty-1 in tomato. Eur. J. Plant. Pathol. 117: 47-356. [DOI: 10.1007/s10658-007-9103-2]10.1007/s10658-007-9103-2Search in Google Scholar

Causse M., Damidaus R., Rousselle 2007. Traditional and enhanced breeding for quality traits in tomato. Genetic improvement of Solanaceous crops. Tomato. Science Publisher 2: 153-192.10.1201/b10744-6Search in Google Scholar

Causse M., Duffe P., Gomez M.C., Buret M., Damiadux R., Zamir D. et al. 2004. A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. Journal of Experimental Botany, 55(403): 1671-1685. [DOI: 10.1093/jxb/erh207]10.1093/jxb/erh20715258170Search in Google Scholar

Ceccarelli S., Grando S. 1996. Drought as a challenge for the plant breeder. Plant Growth Regul. 20: 149-155. [DOI: 10.1007/BF00024011]10.1007/BF00024011Search in Google Scholar

Chunwongse J., Bunn T.B., Crossman C., Jiang J., Tanksley S.D. 1994. Chromosomal localization and molecular-marker tagging of the powdery mildew resistance gene (Lv) in tomato. Theor. Appl. Genet. 89: 76-79. [DOI: 10.1007/BF00226986]10.1007/BF0022698624177773Search in Google Scholar

Cregan P.B., Mudge J., Fickus E.W., Danesh D., Denny R., Young N.D. 1999. Two simple sequence repeat markers to select for soybean cyst nematode resistance conditioned by the rhg1 locus. Theor. Appl. Genet. 99: 811-818. [DOI: 10.1007/s001220051300]10.1007/s001220051300Search in Google Scholar

Crosbie T.M., Eathington S.R., Johnson G.R., Edwards M., Reiter R., Stark S. et al. 2006. Plant breeding: Past, present, and future. p. 3-50. In K.R. Lamkey and M. Lee (ed.) Plant breeding: The Arnel R. Hallauer international symposium. Blackwell, Ames, IA. [DOI: 10.1002/9780470752708.ch1]10.1002/9780470752708.ch1Search in Google Scholar

Davies J.N., Hobson G.E. 1981. The constituents of tomato fruit - The influence of environment, nutrition and genotype. Crit Rev Food Sci Nutr 15: 205-280. [DOI: 10.1080/10408398109527317]10.1080/104083981095273177030623Search in Google Scholar

Dickinson M.J., Jones D.A., Jones J.D.G. 1993. Close linkage between the Cf-2/Cf-5 and Mi resistance loci in tomato. The American Phytopathology Society 6(3).10.1094/MPMI-6-341Search in Google Scholar

Diwan N., Fluhr R., Eshed Y., Zamir D., Tanksley S.D. 1999. Mapping of Ve in tomato: a gene conferring resistance to the broad-spectrum pathogen, Verticillium dahliae race 1. Theor. Appl. Genet. 98(2): 315-319. [DOI: 10.1007/s001220051075]10.1007/s001220051075Search in Google Scholar

Doidge E.M. 1921. A tomato canker. Ann Appl Biol. 7: 407-430. [DOI: 10. 1111/j.1744-7348.1921.tb05528.x]10.1111/j.1744-7348.1921.tb05528.xSearch in Google Scholar

Dudal R. 1976. Inventory of major soils of the world with special reference to mineral stress. Cornell Univ Agric Expt Stn., Ithaca.Search in Google Scholar

Dwivedi S.L., Crouch J.H., Mackill D.J., Xu Y., Blair M.W., Ragot M., Upadhyaya H.D., Ortiz R. 2007. The molecularization of public sector crop breeding: Progress, problems, and prospects. Adv. Agron. 95: 163-318. [DOI: 10.1016/S0065-2113(07) 95003-8]Search in Google Scholar

Fazio G., Stevens M.R., Scott J.W. 1999. Identification of RAPD markers linked to fusarium crown and root rot resistance (Frl) in tomato. Euphytica 150: 205-210. [DOI: 10.1023/A:1003497719705]10.1023/A:1003497719705Search in Google Scholar

Foolad M.R. 2007a. Genome mapping and molecular breeding of tomato. International Journal of Plant Genomics 10: 1-52. [DOI: 10.1155/2007/64358]10.1155/2007/64358226725318364989Search in Google Scholar

Foolad M.R. 2007b. Tolerance to abiotic stresses. Genetic improvement of Solanaceous crops. Tomato, Science Publisher 2: 521-592.Search in Google Scholar

Foolad M.R., Zhang L.P., Subbiah P. 2003. Genetics of drought tolerance during seed germination in tomato: inheritance and QTL mapping. Genome 46(4): 536-545.10.1139/g03-03512897861Search in Google Scholar

Foolad M.R., Zhang L.P., Lin G.Y. 2001. Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome 44(3).10.1139/g01-030Search in Google Scholar

Frary A., Xu Y. Liu, Mitchel J., Tedeschi S., Tanksley S.D. 2005. Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor. Appl. Genet. 111: 291-312. [DOI: 10.1007/s00122-005-2023-7]10.1007/s00122-005-2023-715926074Search in Google Scholar

Frary A., Fulton T.M., Zamir D., Tanksley S.D. 2004. Advanced backcross QTL analysis of a Lycopersicon esculentum x L. pennellii cross and identification of possible orthologs in the Solanaceae. Theoretical and Applied Genetics 108(3): 485-496. [DOI: 10.1007/s00122-003-1422-x]10.1007/s00122-003-1422-x14740082Search in Google Scholar

Ganal M.W., Simon R., Brommonschenkel S., Arndt M., Phillips M.S., Tanksley S.D., Kumar A. 1995. Genetic Mapping of a Wide Spectrum Nematode Resistance Gene (Hero) Against Globodera rostochiensis in Tomato. MPMI 8(6): 886-891.10.1094/MPMI-8-0886Search in Google Scholar

Garcia B.E., Mejía L., Salus M.S., Martin C.T., Seah S, Williamson V.M., Maxwell D.P. 2007. A co-dominant SCAR marker, Mi23, for detection of the Mi-1.2 gene for resistance to root-knot nematode in tomato germplasm. http://www.plantpath.wisc.eduSearch in Google Scholar

Gilbert J.C., McQuire D.C. 1955. One major gene for resistance to sever galling from Meloidogyne incognita. Report of the tomato genetics cooperative 5: 15.Search in Google Scholar

Godzina M., Staniaszek M., Kiełkiewicz M. 2010. Relevance of the MI23 marker and the potato aphid as indicators of tomato plant (Solanum lycopersicum L.) resistance to some pest. Veget. Crops Res. Bull. Vol. 72: 25-33. [DOI: 10.2478/v10032-010-0003-1]10.2478/v10032-010-0003-1Search in Google Scholar

Grogan R.G., Kimble K.A., Misaghi I. 1975. A stern canker disease of tomato caused by Alternaria alternata f. sp. lycopersici. Phytopathology 65: 880-886.10.1094/Phyto-65-880Search in Google Scholar

Hendrix J., Frazier W.A. 1949. Studies of the inheritance of Stemphylium resistance in tomatoes. Hawaii Agric Exp Stn Tech Bull 8.Search in Google Scholar

Hanson P.M., Bernacchi D., Green S., Tanksley S.D., Muniyappa V., Padmaja A.S. et al. 2000. Mapping of a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. J. Amer. Soc. Hort. Sci. 125: 15-20.10.21273/JASHS.125.1.15Search in Google Scholar

Hanson P., Green S.K., Kuo G. 2006. Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato. TGC Reports 56: 22-25.Search in Google Scholar

Hsiao T.C. 1973. Plant responses to water stress. Annu. Rev. Plant Physiol. 24: 519-570. [DOI: 10.1146/annurev.pp.24.060173.002511]10.1146/annurev.pp.24.060173.002511Search in Google Scholar

Huang C-C., Van De Putte P.M., Haanstra-Van Der Merr J.G., Meijer-Dekens F., Lindhout P. 2000. Characterization and mapping of resistance to Oidium lycopersicum in two Lycopersicon hirsutum accession: evidence for close linkage of two Ol-genes on chromosome 6 of tomato. WILEY Heredity 85(6). [DOI: 10.1046/j.1365-2540.2000.00770.x]10.1046/j.1365-2540.2000.00770.x11240617Search in Google Scholar

Ji Y., Scott J.W. 2006. Ty-3, a begomovirus resistance locus linked to Ty-1 on chromosome 6 of tomato. TGC Reports 56: 22-24.Search in Google Scholar

Johnson G.R. 2004. Marker-assisted selection. Plant Breed. Rev. 24: 293-301. [DOI: 10.1002/9780470650240.ch13]10.1002/9780470650240.ch13Search in Google Scholar

Kaloshian I., Lange W.H., Williamson V.M. 1995. An aphid-resistance locus is tightly linked to the nematode-resistance gene, Mi, in tomato. Proc. Natl. Acad. Sci. USA, 92: 622-625.Search in Google Scholar

Kabelka E., Franchino B.M., Francis D. 2002. Two loci from Lycopersicon hirsutum LA407 confer resistance to strains of Clavibacter michiganensis subsp. michiganensis. Phytopathology 92(5): 504-510.10.1094/PHYTO.2002.92.5.50418943024Search in Google Scholar

Kawchuk L.M., Hachey J., Lynch D.R. 1998. Development of sequence characterized DNA markers linked to a dominant verticillium wilt resistance gene in tomato. Genome 41(1): 91-95.10.1139/g97-111Search in Google Scholar

Lim G.T.T., Wang G.-P., Hemming M.N., Basuki S., McGrath D.J., Carroll B.J., Jones D.A. 2006. Mapping the I-3 gene for resistance for Fusarium wilt in tomato: application of an I-3 marker in tomato improvement and progress towards the cloning of I-3. Australasian Plant Pathology 35(6) 671-680. [DOI: 10.1071/AP06073]10.1071/AP06073Search in Google Scholar

Masojc P. 2009. Metody detekcji polimorfizmu sekwencji DNA i ich zastosowania. W: Biotechnologia Roślin. Redakcja naukowa Stefan Malepszy. Wydawnictwo Naukowe PWN.Search in Google Scholar

Martin G.B., Vicente M.C., Tanksley S.D. 1993. High-resolution linkage analysis and physical characterization of the Pto bacterial resistance locus in tomato. Molecular Plant Microbiology Interactions 6: 26-34.10.1094/MPMI-6-026Search in Google Scholar

Martin G.B., Williams J.G.K., Tanksley S.D. 1991. Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and nearisogenic lines. Proc. Natl. Acad. Sci. 88: 2336-2340.10.1073/pnas.88.6.2336512262006172Search in Google Scholar

Melchinger A.E. 1990. Use of molecular markers in breeding for oligogenic disease resistance. Plant Breeding 104: 1-19. [DOI: 10.1111/j.1439-0523.1990.tb00396.x]10.1111/j.1439-0523.1990.tb00396.xSearch in Google Scholar

Mesbah L.A., Kneppers R.J.A., Takken F.L.W., Laurent P., Hille J., Nijkamp H.J.J. 1999. Genetic and physical analysis of a YAC contig spanning the fungal disease resistance locus Asc of tomato (Lycopersicon esculentum). Mol Gen Genet 261: 50-57. [DOI: 10.1007/s004380050940]10.1007/s00438005094010071209Search in Google Scholar

Miklas P.N., Kelly J.D., Beebe S.E., Blair M.W. 2006. Common bean breeding for resistance against biotic and abiotic stresses: From classical to MAS breeding. Euphytica 147: 105-131. [DOI: 10.1007/s10681-006-4600-5]10.1007/s10681-006-4600-5Search in Google Scholar

Moreau P., Thoquet P., Olivier J., Laterrot H., Grimsley N. 1998. Genetic mapping of Ph-2, a single locus controlling partial resistance to Phytophthora infestans in tomato. Molecular Plant-Microbe Interactions 11(4): 259-269.10.1094/MPMI.1998.11.4.259Search in Google Scholar

Mueller L., Tanksley S.D., Giovannoni J.J., van Eck J., Stack S., Choi D. et al. 2005a. The Tomato Sequencing Project, the first cornerstone of the International Solanaceae Project (SOL). Comparative and Functional Genomics, 6: 153-158, Published online in Wiley InterScience (www.interscience.wiley.com). [DOI: 10.1002/cfg.468] http://www.interscience.wiley.com10.1002/cfg.468Search in Google Scholar

Mueller L.A., Solow R.H., Taylor N., Skwarecki B., Buels R., Binns J. et al. 2005b. The SOL Genomics Network. A Comparative Resource for Solanaceae Biology and Beyond. Plant Physiology 138: 1310-1317.10.1104/pp.105.060707Search in Google Scholar

Mullis K.B., Faloona F.A. 1987. Specyfic synthesis of DNA in vitro via a polymerasecatalyzed chain reaction. Meth Enzymol 155: 335-350.10.1016/0076-6879(87)55023-6Search in Google Scholar

Ohmori T., Murata M., Motoyoshi F. 1996. Molecular characterization of RAPD and SCAR markers linked to the Tm-1 locus in tomato. Theoretical and Applied Genetics, 92(2): 151-156. [DOI: 10.1007/BF00223369]10.1007/BF00223369Search in Google Scholar

Paterson R.G., Scott S.J., Gergerich R.C. 1989. Resistance in two Lycopersicon species to an Arkansas isolate of tomato spotted wilt virus. Euphytica 43: 173-178. [DOI: 10.1007/BF00037910]10.1007/BF00037910Search in Google Scholar

Pico B., Diez M.J., Nuez F. 1996. Viral diseases causing the greatest economic losses to the tomato crop .2. The tomato yellow leaf curl virus - A review. Sci. Hort.-Amsterdam 67: 151-196. [DOI: 10.1016/S0304-4238(96)00945-4]10.1016/S0304-4238(96)00945-4Search in Google Scholar

Pospieszny H., Hasiów-Jaroszewska B., Borodynko N. 2009. Occurrence of tomato mosaic virus (ToMV) on field-grown tomato plants. Progress in Plant Protection/ Postępy w Ochronie Roślin 49(3).Search in Google Scholar

PueHee P., Young Ch., HyunRan K., KyeongHo Ch., DaeGeun O., Ki-Taek K. 2010. Development of a SCAR marker linked to Ph-3 in Solanum ssp. Korean Journal of Breeding Science. 42: 2, 139-143.Search in Google Scholar

Ragot M., Lee M. 2007. Marker-assisted selection in maize Current status, potential, limitations and perspectives from the private and public sectors. p. 117-150. In E.P. Guimarães et al. (ed.) Marker-assisted selection, current status and future perspectives in crops, live-stock, forestry, and fish. FAO, Rome.Search in Google Scholar

Rick C.M., Fobes J.F. 1974. Association on an allozyme with nematode resistance. Report of the tomato genetics cooperative 24: 25.Search in Google Scholar

Rick C.M. 1957. Genetic and systemic studies on accessions of Lycopersicon from the Galapagos Island. Am. J. Bot. 43: 687-696.10.1002/j.1537-2197.1956.tb14433.xSearch in Google Scholar

Robert V.J.M., West M.A., Inai S. 2001. Marker-assisted introgression of blackmold resistance QTL alleles from wild Lycopersicon cheesmanii to cultivated tomato (L. esculentum) and evaluation of QTL phenotypic effects. Molecular Breeding 8(3): 217-233.10.1023/A:1013734024200Search in Google Scholar

Rousseaux M.C., Jones C.M., Adams D., Chetelat R., Bennett A., Powell A. 2005. QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines. Theor. Appl. Genet. 111: 1396-1408. [DOI: 10.1007/s00122-005-0071-7]10.1007/s00122-005-0071-716177901Search in Google Scholar

Rush D.W., Epstein E. 1981. Comparative studies on sodium, potassium and chloride relations of wild halophytic and domestic salt-sensitive tomato species. Plant Physiol. 68: 1308-1313.Search in Google Scholar

Sandbrink J.M., Van Ooijen J., Purimahua C. 1995. Localization of genes for bacterial canker resistance in Lycopersicon peruvianum using RFLPs. Theoretical and Applied Genetics 90(3-4): 444-450. [DOI: 10.1007/BF00221988]10.1007/BF0022198824173936Search in Google Scholar

Sarfatti M., Abu-Abied M., Katan J., Zamir D. 1991. RFLP mapping of I1, a new locus in tomato conferring resistance against Fusarium oxysporum f. sp. lycopersici race 1. Theoretical and Applied Genetics 82(1): 22-26. [DOI: 10.1007/BF00231273]10.1007/BF0023127324212856Search in Google Scholar

Sarfatti M., Katan J., Fluhr R., Zamir D. 1989. An RFLP marker in tomato linked to the Fusarium oxysporum resistance gene I2. Theor. Appl. Genet. 78(5): 755-759. [DOI: 10.1007/BF00262574]10.1007/BF0026257424225839Search in Google Scholar

Scott J.W., Gardner R.G. 2007. Breeding for resistance to fungal pathogens. Genetic improvement of Solanaceous crops. Vol. 2 Tomato, Science Publisher. pp. 421-456.Search in Google Scholar

Stamova B.S., Chetelat R.T. 2000. Inheritance and genetic mapping of cucumber mosaic virus resistance introgressed from Lycopersicon chilense into tomato. Theoretical and Applied Genetics 101(4): 527-537. [DOI: 10.1007/s001220051512]10.1007/s001220051512Search in Google Scholar

Staniaszek M., Kozik E.U., Marczewski W. 2007. A CAPS marker TAO1902 diagnostic for the I-2 gene conferring resistance to Fusarium oxysporum f. sp. lycopersici race 2 in tomato. Plant Breeding 126(3): 331-333. [DOI: 10.1111/j.1439-0523.2007.01355.x]10.1111/j.1439-0523.2007.01355.xSearch in Google Scholar

Staniaszek M., Szajko K., Kozik E., Nowakowska M., Habdas H., Marczewski W. 2010. Marker assisted selection for functional male sterility in tomato. The 7th Solanaceae Conference, Dundee, September 5-9, 2010.Search in Google Scholar

Stevens M.R., Robbins M.D. 2007. Molecular markers in selection of tomato germplasm. Genetic improvement of Solanaceous crops, Vol. 2 Tomato, Science Publisher. pp. 239-260.Search in Google Scholar

Stevens M.R., Heiny D.K., Griffiths P.D., Scott J.W., Rhoads D.D. 1996. Identification of co-dominant RAPD markers tightly linked to the tomato spotted wilt virus (TSWV) resistance gene Sw-5. TGC Report 46: 27-28.Search in Google Scholar

Stevens M.R., Lamb E.M., Rhoads D.D. 1995. Mapping the Sw-5 locus for tomato spotted wilt virus resistance in tomatoes using RAPD and RFLP analyses. Theoretical and Applied Genetics 90(3-4): 451-456. [DOI: 10.1007/BF00221989]10.1007/BF0022198924173937Search in Google Scholar

Stevens M.A. 1986. Inheritance of tomato fruit quality components. Plant Breed Rev 4: 273-311.10.1002/9781118061015.ch9Search in Google Scholar

Stommel J.R., Zhang Y.P. 1998. Molecular markers linked to quantitative trait loci for anthracnose resistance in tomato (Abstract). HortScience 33: 514.10.21273/HORTSCI.33.3.515aSearch in Google Scholar

Ślusarski Cz. 2000. W tradycyjnej uprawie pod osłonami - choroby doglebowe pomidorów. Hasło Ogrodnicze 12.Search in Google Scholar

Tal M., Shannon M.C. 1983. Salt tolerance in the wild relatives of the cultivated tomato responses of Lycopersicon esculentum, L. cheesmanii, L. peruvianum, Solanum pennellii and F1 hybrids to salinity. Aust. J. Plant Physiol. 10: 109-117. [DOI: 10.1071/PP9830109]10.1071/PP9830109Search in Google Scholar

Truco M.J., Randall L.B., Bloom A.J., Clair D.A. St. 2000. Detection of QTLs associated with shoot wilting and root ammonium uptake under chilling temperatures in an interspecific backcross population from Lycopersicon esculentum x L. hirsutum. Theor. Appl. Genet. 101(7): 1082-1092. [DOI: 10.1007/s001220051583]10.1007/s001220051583Search in Google Scholar

Tanksley S.D., Nelson J.C. 1996. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor. Appl. Genet. 92:191-203. [DOI: 10.1007/BF00223376]10.1007/BF0022337624166168Search in Google Scholar

Tanksley S.D., Ganal M.W., Prince J.P., de Vicente M.C., Bonierbale M.W., Broun P., Fulton T.M., Giovannoni J.J., Grandillo S., Martin G.B., Messeguer R., Miller J.C., Miiler L., Paterson A.H., Pineda O., RSder M.S., Wing R.A., Wu W., Young N.D. 1992. High-density molecular linkgae maps of the tomato and potato genomes. Genetics 132:1141-1160.10.1093/genetics/132.4.114112052351360934Search in Google Scholar

Tanksley S.D., Mutschler M.A. 1990. Linkage map of the tomato (Lycopersicon esculentum) (2 N = 24). In: S.J. O'Brien. [ed.], Genetic maps: Locus Maps of Complex Genomes 5th Edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, pp 6.3-6.15.Search in Google Scholar

Tanksley S.D., Rick C.M., Vallejos C.E. 1984. Tight linkage between a nuclear male-sterile locus and an enzyme marker in tomato. Theor. Appl. Genet. 68: 109-113. [DOI: 10.1007/BF00252324]10.1007/BF0025232424258951Search in Google Scholar

Tanksley S.D. 1983. Molecular markers in plant breeding. Plant Mol. Biol., Rep 1:3-8. [DOI: 10.1007/BF02680255]10.1007/BF02680255Search in Google Scholar

Tanksley S.D., Rick C.M. 1980. Isozyme gene linkage map of the tomato: Applications in genetics and breeding. Theor. Appl. Genet. 58: 161-170. [DOI: 10.1007/BF00279708]10.1007/BF0027970824301284Search in Google Scholar

Vallejos C.E., Tanksley S.D. 1983. Segregation of isozyme markers and cold tolerance in an interspecific backcross of tomato. Theor. Appl. Genet. 66(3-4): 241-247.10.1007/BF0025115324263923Search in Google Scholar

Van der Biezen E.A., Glagotskaya T., Overduin B., Nijkamp H.J.J., Hille J. 1995. Inheritance and genetic mapping of resistance to Alternaria alternata f. sp. lycopersici from Lycopersicon pennellii. Mol Gen Genet. 247: 453-461. [DOI: 10.1007/BF00293147]10.1007/BF002931477770053Search in Google Scholar

Van der Beek J.G., Pet G., Lindgout P. 1994. Resistance to powdery mildew (Oidium lycopersicum) in Lycopersicon hirsutum is controlled by an incompletely-dominant gene Ol-1 on chromosome 6. Theor. Appl. Genet. 89: 467-473. [DOI: 10.1007/BF00225382]10.1007/BF0022538224177896Search in Google Scholar

Van Heusden A.W., Koornneef M., Voorrips R.E. 1999. Three QTLs from Lycopersicon peruvianum confer a high level of resistance to Clavibacter michiganensis ssp. michiganensis. Theor. Appl. Genet. 99(6): 1068-1074. [DOI: 10.1007/s001220051416]10.1007/s001220051416Search in Google Scholar

Williamson V.M., Ho J.Y., Wu F.F., Miller N., Kaloshian I. 1994. A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato. Theor. Appl. Genet. 87(7): 757-763. [DOI: 10.1007/BF00221126]10.1007/BF0022112624190460Search in Google Scholar

Wing R.A., Zhang H-B., Tanksley S.D. 1994. Map-based cloning in crop plants. Tomato as a model system: I. genetic and physical mapping of jointless. Mol. Gen. Genet. 242(6): 681-688. [DOI: 10.1007/BF00283423]10.1007/BF002834237908716Search in Google Scholar

Winter P., Kahl G. 1995. Molecular marker technologies for plant improvement. World Journal of Microbiology and Biotechnology 11(4): 438-448. [DOI: 10.1007/BF00364619]10.1007/BF0036461924414752Search in Google Scholar

Xu Y., Crouch J.H. 2008. Marker-Assisted Selection in plant breeding: From publication to practice. Crop Science 48: 391-407. [DOI: 10.2135/cropsci2007.04.0191]10.2135/cropsci2007.04.0191Search in Google Scholar

Yang W., Francis D.M. 2007. Genetics and breeding for resistance to bacterial disease in tomato: Prospects for marker-assisted selection. Genetic improvement of Solanaceous crops. Tomato, Science Publisher. (2): 379-420.Search in Google Scholar

YiPeng Q., HaiTao L., ZiJun Z., QingDao Z. 2009. RAPD marker of the resistant gene Ph-3 for tomato late blight. [Chinese]. Acta Horticulturae Sinica. 36: 8, 1227-1232.Search in Google Scholar

Young N.D., Zamir D., Ganal M.W., Tanksley S.D. 1988. Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato. Genetics 120: 579-585.10.1093/genetics/120.2.579120353417246482Search in Google Scholar

Yu Z.H., Wang J.F., Stall R.E., Vallejos C.E. 1995. Genomic localization of tomato genes that control a hypersensitive reaction to Xanthomonas campestris pv. vesicatoria (Doidge) Dye. Genetics 141: 675-682.10.1093/genetics/141.2.67512067658647402Search in Google Scholar

Yuling B., Lindhout P. 2007. Domestication and breeding of tomatoes: What have we gained and what can we gain in the future. Annals of Botany 100: 1085-1094. [DOI: 10.1093/aob/mcm150]10.1093/aob/mcm150275920817717024Search in Google Scholar

Zamir D., Ekstein-Michelson I., Zakay Y., Navot N., Zeidan M., Sarfatti M. et al. 1994. Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theor. Appl. Genet. 88: 141-146. [DOI: 10.1007/BF00225889]10.1007/BF0022588924185918Search in Google Scholar

Zamir D., Tal M. 1987. Genetic analysis of sodium, potassium and chloride ion content in Lycopersicon. Euphytica 36(1): 187-191. [DOI: 10.1007/BF00730663]10.1007/BF00730663Search in Google Scholar

Zhang L.P., Lin G.Y., Nino-Liu D., Foolad M.R. 2003. Mapping QTLs conferring early blight (Alternaria solani) resistance in a Lycopersicon esculentum x L. hirsutum cross by selective genotyping. Molecular Breeding. 12(1): 3-19. [DOI: 10.1023/A:1025434319940]10.1023/A:1025434319940Search in Google Scholar

Zhang H-B., Budiman M.A., Wing R.A. 2000. Genetic mapping of jointless-2 to tomato chromosome 12 using RFLP and RAPD markers. Theor. Appl. Genet. 100(8): 1183-1189. [DOI: 10.1007/s001220051422]10.1007/s001220051422Search in Google Scholar

Zhang H-B., Martin G.B., Thanksley S.D., Wing R.A. 1994. Map-based cloning in crop plants: tomato as a model system II. Isolation and characterization of a set of overlapping yeast artificial chromosomes encompassing the jointless locus. Mol. Gen. Genet., 244(6): 613-621. [DOI: 10.1007/BF00282751]10.1007/BF002827517969030Search in Google Scholar

eISSN:
1231-0948
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Plant Science, other