Cite

Sodee DB, Conant R, Chalfant M, Miron S, Klein E, Bahnson R, et al. Preliminary imaging results using In-111 labeled CYT-356 (Prostascint) in the detection of recurrent prostate cancer. Clin Nucl Med 1996; 21: 759-67.10.1097/00003072-199610000-000028896922Search in Google Scholar

Nanus DM, Milowsky MI, Kostakoglu L, Smith-Jones PM, Vallabahajosula S, Goldsmith SJ, et al. Clinical use of monoclonal antibody HuJ591 therapy: targeting prostate specific membrane antigen. J Urol 2003; 170(6 Pt 2): S84-8; discussion S88-9.10.1097/01.ju.0000095151.97404.7c14610416Search in Google Scholar

Abdel-Nabi H, Doerr RJ, Chan HW, Balu D, Schmelter RF, Maguire RT. In-111-labeled monoclonal antibody immunoscintigraphy in colorectal carcinoma: safety, sensitivity, and preliminary clinical results. Radiology 1990; 175: 163-71.10.1148/radiology.175.1.23154762315476Search in Google Scholar

Moffat FL, Jr., Pinsky CM, Hammershaimb L, Petrelli NJ, Patt YZ, Whaley FS, et al. Clinical utility of external immunoscintigraphy with the IMMU-4 technetium-99m Fab' antibody fragment in patients undergoing surgery for carcinoma of the colon and rectum: results of a pivotal, phase III trial. The Immunomedics Study Group. J Clin Oncol 1996; 14: 2295-305.10.1200/JCO.1996.14.8.22958708720Search in Google Scholar

Breitz HB, Tyler A, Bjorn MJ, Lesley T, Weiden PL. Clinical experience with Tc-99m nofetumomab merpentan (Verluma) radioimmunoscintigraphy. Clin Nucl Med 1997; 22: 615-20.10.1097/00003072-199709000-000079298295Search in Google Scholar

Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol 2001; 19: 316-7.10.1038/8668411283581Search in Google Scholar

Wagnieres GA, Star WM, Wilson BC. In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol 1998; 68: 603-32.10.1111/j.1751-1097.1998.tb02521.xSearch in Google Scholar

Rajwa B, Bernas T, Acker H, Dobrucki J, Robinson JP. Single- and two-photon spectral imaging of intrinsic fluorescence of transformed human hepatocytes. Microsc Res Tech 2007; 70: 869-79.10.1002/jemt.2049717661363Search in Google Scholar

Troy T, Jekic-McMullen D, Sambucetti L, Rice B. Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging 2004; 3: 9-23.10.1162/15353500477386168815142408Search in Google Scholar

Inoue Y, Izawa K, Kiryu S, Tojo A, Ohtomo K. Diet and abdominal autofluorescence detected by in vivo fluorescence imaging of living mice. Mol Imaging 2008; 7: 21-7.10.2310/7290.2008.0003Search in Google Scholar

Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nat Med 2003; 9: 123-8.10.1038/nm0103-123Search in Google Scholar

Chang K, Jaffer F. Advances in fluorescence imaging of the cardiovascular system. J Nucl Cardiol 2008; 15: 417-28.10.1016/j.nuclcard.2008.03.001Search in Google Scholar

Ballou B. Quantum dot surfaces for use in vivo and in vitro. Curr Top Dev Biol 2005; 70: 103-20.10.1016/S0070-2153(05)70005-3Search in Google Scholar

Rao J, Dragulescu-Andrasi A, Yao H. Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol 2007; 18: 17-25.10.1016/j.copbio.2007.01.00317234399Search in Google Scholar

Jin ZH, Josserand V, Razkin J, Garanger E, Boturyn D, Favrot MC, et al. Noninvasive optical imaging of ovarian metastases using Cy5-labeled RAFT-c(-RGDfK-)4. Mol Imaging 2006; 5: 188-97.10.2310/7290.2006.00022Search in Google Scholar

Thomas TP, Patri AK, Myc A, Myaing MT, Ye JY, Norris TB, et al. In vitro targeting of synthesized antibody-conjugated dendrimer nanoparticles. Biomacromolecules 2004; 5: 2269-74.10.1021/bm049704h15530041Search in Google Scholar

Zhang T, Stilwell JL, Gerion D, Ding L, Elboudwarej O, Cooke PA, et al. Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. Nano Lett 2006; 6: 800-8.10.1021/nl0603350273058616608287Search in Google Scholar

Stroh M, Zimmer JP, Duda DG, Levchenko TS, Cohen KS, Brown EB, et al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med 2005; 11: 678-82.10.1038/nm1247268611015880117Search in Google Scholar

Lupold SE, Hicke BJ, Lin Y, Coffey DS. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 2002; 62: 4029-33.Search in Google Scholar

Patri AK, Myc A, Beals J, Thomas TP, Bander NH, Baker JR, Jr. Synthesis and in vitro testing of J591 antibody-dendrimer conjugates for targeted prostate cancer therapy. Bioconjug Chem 2004; 15: 1174-81.10.1021/bc049912715546182Search in Google Scholar

Lisy MR, Goermar A, Thomas C, Pauli J, Resch-Genger U, Kaiser WA, et al. In vivo near-infrared fluorescence imaging of carcinoembryonic antigen-expressing tumor cells in mice. Radiology 2008; 247: 779-87.10.1148/radiol.247207012318413884Search in Google Scholar

Chen CH, Chernis GA, Hoang VQ, Landgraf R. Inhibition of heregulin signaling by an aptamer that preferentially binds to the oligomeric form of human epidermal growth factor receptor-3. Proc Natl Acad Sci USA 2003; 100: 9226-31.10.1073/pnas.133266010017090012874383Search in Google Scholar

Shukla R, Thomas TP, Peters JL, Desai AM, Kukowska-Latallo J, Patri AK, et al. HER2 specific tumor targeting with dendrimer conjugated anti-HER2 mAb. Bioconjug Chem 2006; 17: 1109-15.10.1021/bc050348p16984117Search in Google Scholar

Veiseh M, Gabikian P, Bahrami SB, Veiseh O, Zhang M, Hackman RC, et al. Tumor paint: a chlorotoxin: Cy5.5 bioconjugate for intraoperative visualization of cancer foci. Cancer Res 2007; 67: 6882-8.10.1158/0008-5472.CAN-06-394817638899Search in Google Scholar

Shukla R, Thomas TP, Peters J, Kotlyar A, Myc A, Baker Jr JR. Tumor angiogenic vasculature targeting with PAMAM dendrimer-RGD conjugates. Chem Commun (Camb) 2005; 46: 5739-41.10.1039/b507350b16307130Search in Google Scholar

Cai W, Chen X. Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging. Nat Protoc 2008; 3: 89-96.10.1038/nprot.2007.47818193025Search in Google Scholar

Gunn AJ, Hama Y, Koyama Y, Kohn EC, Choyke PL, Kobayashi H. Targeted optical fluorescence imaging of human ovarian adenocarcinoma using a galactosyl serum albumin-conjugated fluorophore. Cancer Sci 2007; 98: 1727-33.10.1111/j.1349-7006.2007.00602.x258554517784874Search in Google Scholar

Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004; 22: 969-76.10.1038/nbt99415258594Search in Google Scholar

Kaushal S, McElroy MK, Luiken GA, Talamini MA, Moossa AR, Hoffman RM, et al. Fluorophore-conjugated anti-CEA antibody for the intraoperative imaging of pancreatic and colorectal cancer. J Gastrointest Surg 2008; 12: 1938-50.10.1007/s11605-008-0581-0439659618665430Search in Google Scholar

Virostko J, Xie J, Hallahan DE, Arteaga CL, Gore JC, Manning HC. A molecular imaging paradigm to rapidly profile response to angiogenesis-directed therapy in small animals. Mol Imaging Biol 2009; 11: 204-12.10.1007/s11307-008-0193-9267712619130143Search in Google Scholar

Takeda M, Tada H, Higuchi H, Kobayashi Y, Kobayashi M, Sakurai Y, et al. In vivo single molecular imaging and sentinel node navigation by nanotechnology for molecular targeting drug-delivery systems and tailor-made medicine. Breast Cancer 2008; 15: 145-52.10.1007/s12282-008-0037-018317884Search in Google Scholar

Kamaly N, Kalber T, Thanou M, Bell JD, Miller AD. Folate receptor targeted bimodal liposomes for tumor magnetic resonance imaging. Bioconjug Chem 2009; 20: 648-55.10.1021/bc8002259Search in Google Scholar

Yang C, Ding N, Xu Y, Qu X, Zhang J, Zhao C, et al. Folate receptor-targeted quantum dot liposomes as fluorescence probes. J Drug Target 2009; 17: 502-11.10.1080/10611860903013248Search in Google Scholar

Ferreira CS, Matthews CS, Missailidis S. DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biol 2006; 27: 289-301.10.1159/000096085Search in Google Scholar

Perkins AC, Missailidis S. Radiolabelled aptamers for tumour imaging and therapy. Q J Nucl Med Mol Imaging 2007; 51: 292-6.Search in Google Scholar

Charlton J, Sennello J, Smith D. In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase. Chemistry & Biology 1997; 4: 809-16.10.1016/S1074-5521(97)90114-9Search in Google Scholar

Hicke BJ, Stephens AW, Gould T, Chang YF, Lynott CK, Heil J, et al. Tumor targeting by an aptamer. J Nucl Med 2006; 47: 668-78.Search in Google Scholar

Pieve CD, Perkins AC, Missailidis S. Anti-MUC1 aptamers: radiolabelling with (99m)Tc and biodistribution in MCF-7 tumour-bearing mice. Nucl Med Biol 2009; 36: 703-10.10.1016/j.nucmedbio.2009.04.00419647177Search in Google Scholar

Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 2007; 7: 3065-70.10.1021/nl071546n17854227Search in Google Scholar

Razkin J, Josserand V, Boturyn D, Jin ZH, Dumy P, Favrot M, et al. Activatable fluorescent probes for tumour-targeting imaging in live mice. Chem Med Chem 2006; 1: 1069-72.10.1002/cmdc.20060011816944544Search in Google Scholar

Bremer C, Bredow S, Mahmood U, Weissleder R, Tung CH. Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model. Radiology 2001; 221: 523-9.10.1148/radiol.221201036811687699Search in Google Scholar

Reshetnyak YK, Andreev OA, Lehnert U, Engelman DM. Translocation of molecules into cells by pH-dependent insertion of a transmembrane helix. Proc Natl Acad Sci USA 2006; 103: 6460-5.10.1073/pnas.0601463103143540816608910Search in Google Scholar

Andreev OA, Dupuy AD, Segala M, Sandugu S, Serra DA, Chichester CO, et al. Mechanism and uses of a membrane peptide that targets tumors and other acidic tissues in vivo. Proc Natl Acad Sci USA 2007; 104: 7893-8.10.1073/pnas.0702439104186185217483464Search in Google Scholar

Jin ZH, Razkin J, Josserand V, Boturyn D, Grichine A, Texier I, et al. In vivo noninvasive optical imaging of receptor-mediated RGD internalization using self-quenched Cy5-labeled RAFT-c(-RGDfK-)(4). Mol Imaging 2007; 6: 43-55.10.2310/7290.2007.00002Search in Google Scholar

Ballou B, Ernst LA, Waggoner AS. Fluorescence imaging of tumors in vivo. Curr Med Chem 2005; 12: 795-805.10.2174/0929867053507324Search in Google Scholar

Ntziachristos V, Bremer C, Weissleder R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 2003; 13: 195-208.10.1007/s00330-002-1524-xSearch in Google Scholar

Swanson SD, Kukowska-Latallo JF, Patri AK, Chen C, Ge S, Cao Z, et al. Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement. Int J Nanomedicine 2008; 3: 201-10.Search in Google Scholar

Zhu W, Okollie B, Bhujwalla ZM, Artemov D. PAMAM dendrimer-based contrast agents for MR imaging of Her-2/neu receptors by a three-step pretargeting approach. Magn Reson Med 2008; 59: 679-85.10.1002/mrm.21508Search in Google Scholar

Thomas TP, Majoros IJ, Kotlyar A, Kukowska-Latallo JF, Bielinska A, Myc A, et al. Targeting and inhibition of cell growth by an engineered dendritic nanodevice. J Med Chem 2005; 48: 3729-35.10.1021/jm040187vSearch in Google Scholar

Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, et al. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release 2000; 65: 133-48.10.1016/S0168-3659(99)00246-1Search in Google Scholar

Xu R, Wang Y, Wang X, Jeong EK, Parker DL, Lu ZR. In vivo evaluation of a PAMAM-cystamine-(Gd-DO3A) conjugate as a biodegradable macromolecular MRI contrast agent. Exp Biol Med (Maywood) 2007; 232: 1081-9.10.3181/0702-RM-3317720954Search in Google Scholar

Hill E, Shukla R, Park SS, Baker JR, Jr. Synthetic PAMAM-RGD conjugates target and bind to odontoblast-like MDPC 23 cells and the predentin in tooth organ cultures. Bioconjug Chem 2007; 18: 1756-62.10.1021/bc070023417970585Search in Google Scholar

Boswell CA, Eck PK, Regino CA, Bernardo M, Wong KJ, Milenic DE, et al. Synthesis, characterization, and biological evaluation of integrin alphavbeta3-targeted PAMAM dendrimers. Mol Pharm 2008; 5: 527-39.10.1021/mp800022a257459918537262Search in Google Scholar

Majoros IJ, Williams CR, Baker JR, Jr. Current dendrimer applications in cancer diagnosis and therapy. Curr Top Med Chem 2008; 8: 1165-79.10.2174/15680260878584904918855703Search in Google Scholar

Baker M. Whole-animal imaging: The whole picture. Nature 2010; 463: 977-80.10.1038/463977a20164931Search in Google Scholar

Nguyen QT, Olson ES, Aguilera TA, Jiang T, Scadeng M, Ellies LG, et al. Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proc Natl Acad Sci USA 2010; 107: 4317-22.10.1073/pnas.0910261107284011420160097Search in Google Scholar

Yildirim M, Engin O, Oztekin O, Akdamar F, Adibelli ZH. Diagnostic evaluation and surgical management of recurrent hydatid cysts in an endemic region. Radiol Oncol 2009; 43:162-9.10.2478/v10019-009-0032-xSearch in Google Scholar

Avazpour I, Roslan RE, Bayat P, Saripan MI, Nordin AJ, Azmir RS et al. Segmenting CT images of bronchogenic carcinoma with bone metastases using PET intensity markers approach. Radiol Oncol 2009; 43: 180-6.10.2478/v10019-009-0023-ySearch in Google Scholar

eISSN:
1581-3207
ISSN:
1318-2099
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Radiology, Internal Medicine, Haematology, Oncology