This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
CASSELS,J.W.S.: An Introduction to Diophantine Approximation. Cambridge Univ. Press, London/New York, 1957.Search in Google Scholar
DAVENPORT, H.: Indefinite binary quadratic forms, and Euclid’s algorithm in real quadratic fields, Proc. London Math. Soc. 53, no. 2, (1951), 65–82.Search in Google Scholar
ENNOLA, V.: On the first inhomogeneous minimum of indefinite binary quadratic forms, and Euclid’s algorithm in real quadratic fields, Ann. Univ. Turkuensis Ser. AI 28 (1958), 9–58.Search in Google Scholar
FUKASAWA, S.:Über die Grössenordnung des absoluten Betrages von einer linearen inhomogenen Form I, II & IV, Japan J. Math. 3 (1926), 1–26, 91–106 & 4 (1927) 147–167.Search in Google Scholar
GRACE, J. H.: Note on a Diophantine approximation, Proc. London Math. Soc. 17 (1918), 316–319.Search in Google Scholar
KOMATSU, T.: On inhomogeneous continued fraction expansions and inhomogeneous Diophantine approximation, J. Number Theory 62 (1997), no. 1, 192-–212.Search in Google Scholar
PAUDEL, B.—PINNER, C.: An upper bound on the inhomogeneous approximation constants, Proceedings of the Integers Conference 2023, arXiv 2301.12270 [math.NT], Integers (to appear)Search in Google Scholar
PINNER, C. G.: More on inhomogeneous Diophantine approximation, Journal de Théorie des Nombres, Bordeaux. 13 (2001) no. 2, 539–557.Search in Google Scholar
PINNER, C. G.: Lower bounds on the two-sided inhomogeneous approximation constant, arXiv:1603.06178[math.NT], (2016).Search in Google Scholar
PINNER, C.: On the inhomogeneous spectrum of period two quadratics, arXiv:1603.06179 [math.NT], (2016).Search in Google Scholar
PITMAN, J.: Davenport’s constant for indefinite binary quadratic forms,Acta Arith. 6 (1960), 37–46.Search in Google Scholar
ROCKETT, A.—SZÜSZ, P.: Continued Fractions. World Scientific, Singapore, 1992.Search in Google Scholar