Open Access

New Fixed Point Theorem on Extended b-Metric Space Using a Class of Contraction Mappings

,  and   
Jun 24, 2025

Cite
Download Cover

ALQAHTANI, B.—FULGA, A.—KARAPINAR, E.: Common fixed point results on an extended b-metric space, J. Inequal. Appl. (2018), Paper no. 158, 15 pp. https://doi.org/$10.1186/s13660-018-1745-4$. Search in Google Scholar

ALQAHTANI, B.—FULGA, A.—KARAPINAR, E.: Non-unique fixed point results in extended b-metric space,Mathematics 6 (2018), Paper no. 68, 11 pp. https://doi.org/10.3390/math6050068. Search in Google Scholar

AGRAWAL, S.—QURESHI, K.—NEMA, J.: A fixed point theorem for b-metric space, Int. J. Pure Appl. Math. Sci. 9 (2016), 45–50. Search in Google Scholar

BANACH, S.: Surles operations dans les ensembles abstract et leur application aux equation integrals, Fund. Math. 3 (1922), 133–181. Search in Google Scholar

BAKHTIN, I. A.: The contraction mapping principle in almost metric spaces, Funct. Ana. Gos. Ped. Inst. Ul’yanowsk, 30 (1989), 26–37. (In Russian) Search in Google Scholar

BERINDE, V.—PAČURAR, M.: Fixed point theorems for Kannan type mappings with applications to split feasibility and variational inequality problems, arXiv:1909.02379 [math.FA] (2019). https://doi.org/10.48550/arXiv.1909.02379 Search in Google Scholar

BIANCHINI, RM. T.: Su un problema di S. Reich riguardonte la teoria dei punti fissi, Boll. Un. Mat. Ital. 5 (1972), 103–108. Search in Google Scholar

BHATTACHARJEE, K.—LAHA, A. K.—DAS, R.: Fixed point theorems on complete b-metric space by using Rus contraction mapping, Tatra Mt. Math. Publ. (2024), DOI:10.2478/tmmp-2024-0010. Search in Google Scholar

BOTA, M.—MOLNAR, A.—VARGA, C.: On Ekeland’s variational principle in b-metric spaces, Fixed Point Theory 12 (2011), no. 2, 21–28. Search in Google Scholar

BORICEANU, M.: Fixed point theory for multivalued generalized contraction on a set with two b-metric, Stud. Univ. Babes-Bolyai Math. 54 (2009), no. 3, 1–14. Search in Google Scholar

CZERWIK, S.: Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis 1 (1993), no. 1, 5–11. Search in Google Scholar

HUSSAIN, A.—KANWAL, T.: Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results, Trans. A. Razmadze Math. Inst. 172 (2018), no. 3, 481–490. Search in Google Scholar

HUANG, H.—SINGH, Y. M.—KHAN, M. S.—RADENOVIČ, S.: Rational type contractions in extended b-metric spaces, Symmetry, 13, (2021), no. 4, paper no. 614. https://doi.org/10.3390/sym13040614 Search in Google Scholar

KANNAN, R.: Some results on fixed points—II, Amer. Math. Monthly 76 (1969), 405–408. Search in Google Scholar

KAMRAN, T.—SAMREEN, M.—UL AIN, Q.: A generalization of b-metric space and some fixed point theorems,Mathematics 5 (2017), no. 2, Paper no. 19, 7 pp. https://doi.org/10.3390/math5020019. Search in Google Scholar

KIR, M.— KIZILTUNE, H.: On some well-known fixed point theorems in b-metric space, Turkish J. Anal Number Theory, 1 (2013), no. 1, 13–16. Search in Google Scholar

NAZAM, M.—ARSHAD, M.: Some fixed point results in ordered dualistic partial metric spaces, Trans. A. Razmadze Math. Inst. 172 (2018), no. 3, Part B, 498–509. Search in Google Scholar

RHOADES, B. E.: A comparison of various definitions of contractive mappings,Trans. Amer. Math. Soc. 226 (1977), 257–290. Search in Google Scholar

Language:
English
Publication timeframe:
3 times per year
Journal Subjects:
Mathematics, General Mathematics