About this article
Published Online: Jun 24, 2025
Received: Mar 11, 2025
Accepted: Mar 12, 2025
DOI: https://doi.org/10.2478/tmmp-2025-0002
Keywords
© 2025 Milan Paštéka, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
In the first part we recall the notion of statistical independence. The second part is devoted to the definition of selective density and its connection with the distribution of sequences. Then we define the independence of sequences with respect to selective density. Finally, we prove that these two types of independence are equivalent.