This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ABDOU, A. A. N.—KHAMSI, M. A.: Fixed point theorems in modular vector spaces, J. Nonlinear Sci. Appl. 10 (2017), no. 8, 4046–4057.Search in Google Scholar
M. A. ALMALAHI—K. A. ALDWOAH—K. SHAH—T. ABDELJAWAD: Stability and numerical analysis of a coupled system of piecewise atangana–baleanu fractional differential equations with delays, Qualitative Theory of Dynamical Systems, 23 2024, no. 3, 1–27.Search in Google Scholar
BANTAOJAI, T.—SUANOOM, C.: Stability of a generalization of cauchy’s and the quadratic functional equations in quasi-banach spaces, Thai J. Math. 18 (2020), no. 3, 963–975.Search in Google Scholar
BETTENCOURT, G. H.—MENDES, S.: On the stability of a quadratic functional equation over non-archimedean spaces, 35 (2021), no. 8, 2693–2704.Search in Google Scholar
BODAGHI, A.—MOSHTAGH, H.—MOUSIVAND, A. ET AL: Characterization and stability of multi-Euler-Lagrange quadratic functional equations, J. Function Spaces 2022, paper no. 3021457.Search in Google Scholar
BOYKOV, I. V.—ROUDNEV, V. A.—BOYKOVA, A. I.: Stability of solutions of systems of Volterra integral equations, Appl. Math. Comput. 475 (2024), paper no. 128728.Search in Google Scholar
CADARIU L.—RADU, V.: Fixed points and the stability of Jensen’s functional equation, J. Inequal. Pure Appl. Math. 4 (2003), no. (1), article 4, 7 pp.Search in Google Scholar
CZERWIK, S.: On the stability of the quadratic mapping in normed spaces, In: Abhandlungen aus dem Mathematischen Seminar der Universit¨at Hamburg, Vol. 62, Springer--Veralg, Berlin, 1992, pp. 59–64.Search in Google Scholar
DONG, Y.: On approximate isometries and application to stability of a functional equation, J. Math. Anal. Appl. 426 (2015), no. 1, 125–137.Search in Google Scholar
DUTTA, H.—SENTHIL KUMAR, B. V.—SABARINATHAN, S.: Fuzzy stabilities of a new hexic functional equation in various spaces, Analele ¸stiint¸ifice ale Universităt¸ii “Ovidius” Constant¸a. Seria Matematică 30 (2022), no. 3, 143–171.Search in Google Scholar
EL-FASSI, IZ-IDDINE: Approximate solution of a generalized multi-quadratic type functional equation in Lipschitz spaces, J. Math. Anal. Appl. 519 (2023), no. 2, paper no. 126840, 16 pp.Search in Google Scholar
ELUMALAI, P.—SANGEETHA, S.—SELVAN, A.P.: Fixed point approach to the stability of a cubic and quartic mixed type functional equation in non-Archimedean spaces, J. Math. Comput. Sci, 33 (2024), no. 2, 124–136.Search in Google Scholar
GAVRUTA, P.: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431–436.Search in Google Scholar
GOVINDAN, V.—PARK, C.—PINELAS, S.—RASSIAS T. M.: Hyers-Ulam stability of an additive-quadratic functional equation,Cubo (Temuco), 22 (2020), no. 2, 233–255.Search in Google Scholar
GRABIEC, A.: The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen 48 (1996), no. 3–4, 217–235.Search in Google Scholar
GRUBER,P.M.: Stability of isometries,Trans.Amer. Math.Soc. 245 (1978), 263–277.Search in Google Scholar
GÜNDOĞDU, H,—ÖZTÜRK, M. —GÖZÜKIZIL,Ö. F : Fixed point theorems of new generalized c-conditions for (psi; gamma)-mappings in modular metric spaces and its applications, Nonlinear Anal. Model. Control 28 (2023), 1–22.Search in Google Scholar
HYERS, D.-H.: On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 1941, 222–224.Search in Google Scholar
JUNG, S.: Quadratic functional equations of pexider type, Int.J.Math. Math. Sci. 24 (2000), no. 5, 351–359.Search in Google Scholar
JUNG, S.: Hyers-Ulam stability of linear differential equations of first order, II, Appl. Math. Lett. 19 (2006), no. 9, 854–858.Search in Google Scholar
CHUGH, J. R.—JAISWAL, S.—DUBEY, R.: Stability of various functional equations in non-Archimedean (n,β)-normed spaces, The Journal of Analysis, 30 (2022), no. 4, 1653–1669.Search in Google Scholar
JAYARAMAN, U.—KALAICHELVAN, R.: Generalized Hyers-Ulam-Rassias stability of an Euler-Lagrange type cubic functional equation in non-Archimedean quasi-Banach spaces, Mathematical Modelling of Engineering Problems 11 (2024), no. 4, 1021–1028.Search in Google Scholar
KARAPINAR, E.—AKSOY,Ü—FULGA, A.—ERHAN, I. M.: Fixed point theorems for mappings with a contractive iterate at a point in modular metric spaces, Fixed Point Theory 23 (2022), no. 2, 519–531.Search in Google Scholar
KAWANO, A.—MATSUNAGA, H.: Exponential stability and asymptotic periodic solutions of linear integral equations with two delays, J. Dynam. Differential Equations 35 (2023), no. 2, 1309–1335.Search in Google Scholar
KAYAL, N. C.—MONDAL, P.—SAMANTA, T. K.: On the stability of a pexiderized functional equation in intuitionistic fuzzy Banach spaces, App. Appl. Math. 10 (2015), no. (2), 783–794.Search in Google Scholar
KHAMSI, M. A.—KOZLOWSKI, W. M.: Fixed Point Theory in Modular Function Spaces. [With a foreword by W. A. Kirk.], Birkh¨auser, Springer, Cham, 2015.Search in Google Scholar
KOZLOWSKI, W. M.: Modular Function Spaces. Marcel Dekker, Inc., New York, 1988.Search in Google Scholar
MATAR, M. M.—SAMEI, M. E.—ETEMAD, S.— AMARA, A.— REZAPOUR, S.–ALZABUT, J.: Stability analysis and existence criteria with numerical illustrations to fractional Jerk differential system involving generalized caputo derivative, Qualitative Theory of Dynamical Systems, 23 (2024), no. 3, 1–36,Search in Google Scholar
MIRMOSTAFAEE, A. K.—MOSLEHIAN, M. S.: Stability of additive mappings in non-Archimedean fuzzy normed spaces, Fuzzy Sets and Systems, 160 (2009), no. 11, 1643–1652.Search in Google Scholar
MUSIELA, J.: Orlicz spaces and modular spaces, Lecture notes in Math. 1034 (1983), pp. 216.Search in Google Scholar
MUSIELAK, J.—ORLICZ, W.: On modular spaces, Studia Mathematica 18 (1950), no. 1, 49–65.Search in Google Scholar
NAKANO, H.: Modular Semi-ordered Spaces. Tokyo Mathematical Book Series, Maruzen Co. Ltd, Tokyo, Japan, 1950.Search in Google Scholar
NARASIMMAN, P.—BODAGHI, A.: Solution and stability of a mixed type functional equation, Filomat, 31 (2017), no. 5, 1229–1239.Search in Google Scholar
PACHAIYAPPAN, D.—RAMDOSS, M.—LEE, J. R.—MIN, S. W.: Multifarious functional equations in connection with three geometrical means, J. Comput. Anal. Appl. 32 (2024), no. 1.Search in Google Scholar
RASSIAS, J. M.—RAVI, K.—SENTHIL KUMAR, B. V.: Stabilities and instabilities of rational functional equations and Euler-Lagrange-Jensen (a, b)-sextic functional equations, Math. Anal. Appl. Selected Topics (2018), Wiley Online Library, 341–400.Search in Google Scholar
RASSIAS, J. M.—THANDAPANI, E.—RAVI, K.—SENTHIL KUMAR, B. V.: Functional equations and inequalities: solutions and stability results. Series on Concrete and Applicable Mathematics, Vol. 21. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.Search in Google Scholar
RASSIAS, T. M.: On the stability of the linear mapping in banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. (2), 297–300.Search in Google Scholar
SAHA, P.—MONDAL, P.—CHQUDHURY, B. S. : A fixed point approach to the hyersulam-rassias stability problem of pexiderized functional equation in modular spaces, Tatra Mt. Math. Publ. 78 (2021), no. 1, 59–72.Search in Google Scholar
SAHA, P.—SAMANTA, T. K.—MONDAL, P.—CHOUDHURY, B. S.: Stability of a two-variable pexiderized additive functional equation in intuitionistic fuzzy banach spaces: A fixed point approach, Tamsui Oxford Journal of Information & Mathematical Sciences (TOJIMS) 33 (2019), no. 1.Search in Google Scholar
P. SAHA, T. K. SAMANTA, P. MONDAL, AND B. S. CHOUDHURY: Stability of two variable pexiderized quadratic functional equation in intuitionistic fuzzy Banach spaces, Proyecciones (Antofagasta), 38 (2019), no. 3, 447–468.Search in Google Scholar
SAYYARI, Y.—DEHGHANIAN, M.—C. PARK, C.: System of bi-additive and bi-quadratic functional equations, The Journal of Analysi, (2024), 1–12.Search in Google Scholar
SENTHIL KUMAR, B. V.—AL-SHAQSI, K.—DUTTA, H.: Classical stabilities of multiplicative inverse difference and adjoint functional equations, Adv. Difference Equ. 2020 (2020), no. 1, Article no. 215.Search in Google Scholar
SENTHIL KUMAR, B. V.—AL-SHAQSI, K.—SABARINATHAN, S.: Dislocated quasi-metric stability of a multiplicative inverse functional equation, J. Math. Comput. Sci. 24 (2022), 140–146.Search in Google Scholar
TAMILVANAN, K.—ALKHALDI, A. H.—JAKHAR, J.—CHUGH, R.— JAKHAR, J.— RASSIAS, J. M.: Ulam stability results of functional equations in modular spaces and 2-Banach spaces,Mathematics, 11 (2023), no. 2, Article no. 371.Search in Google Scholar
TAMRAKAR, E.—PATHAK, H. K.: Fixed point results for multivalued contraction mappings in modular and non-Archimedean modular metric spaces,J. Anal. 32 (2024), no. 1, 103–123.Search in Google Scholar
ULAM, S. M.: Problems in Modern Mathematics, Courier Corporation, Dover Publications, Inc. Mineola New York, 2004.Search in Google Scholar
WONGKUM, K.—CHAIPUNYA, P.—KUMAM, P. ET AL: On the generalized Ulam-Hyers-Rassias stability of quadratic mappings in modular spaces without-conditions, J. Funct. Spaces Appl. 2015 (2015), no. 1, paper no. 461719.Search in Google Scholar
XU, T. Z.—RASSIAS, M. J.: A fixed point approach to the intuitionistic fuzzy stability of quintic and sextic functional equations, Iran. J. Fuzzy Syst. 9 (2012), no. 5, 21–40.Search in Google Scholar