Open Access

Neutrosophic Fuzzy Tribonacci ℐ-Lacunary Statistical Convergent Sequence Spaces

,  and   
Oct 20, 2024

Cite
Download Cover

ATANASSOV, K. T.: Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), no. 1, 87–96. Search in Google Scholar

DEBNATH, P.: Lacunary ideal convergence in intuitionistic fuzzy normed linear spaces, Comput. Math. Appl. 63 (2012), no. 3, 708–715. Search in Google Scholar

FAST, H.: Sur la convergence statistique, Colloq. Math. 2 (1952), 241–244. Search in Google Scholar

FEINBERG, M.: Fibonacci-tribonacci, Fibonacci Quart. 1 (1963), 71–74. Search in Google Scholar

FRIDY, J. A.—ORHAN, C.: Lacunary statistical convergence, Pacific J. Math. 160 (1993), no. 1, 43–51. Search in Google Scholar

GEORGE, A.—VEERAMANI, P.: On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems. 90 (1997), no. 3, 365–368. Search in Google Scholar

GÜRDAL, M.—ŞAHINER, A.: Extremal ℐ-limit points of double sequences, Appl. Math. E-Notes 8 (2008), 131–137. Search in Google Scholar

KADAK, U.—MOHIUDDINE, S. A.: Generalized statistically almost convergence based on the difference operator which includes the (p,q)-Gamma function and related approximation theorems,Results Math. 73 (2018), no. 1, Paper no. 9, 31 pp. Search in Google Scholar

KALEVA, O.—SEIKKALA, S.: On fuzzy metric spaces, Fuzzy Sets and Systems. 12 (1984), no. 3, 215–229. Search in Google Scholar

KARAKUS, S.—DEMIRCI, K.—DUMAN, O.: Statistical convergence on intuitionistic fuzzy normed spaces, Chaos Solitons Fractals 35 (2008), no. 4, 215–229. Search in Google Scholar

KHAN, V. A.—AHMAD, M.—FATIMA, H.—KHAN, F. M.: On some results in intuitionistic fuzzy ideal convergence double sequence spaces, Adv. Difference Equ. 2019 (2019), no. 1, Paper No. 375, 10 pp. Search in Google Scholar

KHAN, V. A.—FATIMA, H.—ALTAF, H.—LOHANI, Q. M. D.—SRIVASTAVA, H. M.: Intuitionistic fuzzy I-convergent sequence spaces defined by compact operator, Cogent Math. 3 (2016), no. 1, Article ID: 1267904. Search in Google Scholar

KHAN, V. A.—KARA, E.—ALTAF, H.—KHAN, N.—AHMAD, M.: Intuitionistic fuzzy ℐ-convergent Fibonacci difference sequence spaces, J. Inequal. Appl. 2019 (2019), Article no. 202, 7 pp. Search in Google Scholar

KHAN, V. A.—RAHAMAN, S. K. A.: Intuitionistic fuzzy tribonacci convergent sequence spaces, Math. Slovaca 72 (2022), no. 3, 693–708. Search in Google Scholar

KIRIŞCI, M.—ŞIMŞEK, N.: Neutrosophic metric spaces, Math. Sci. 14 (2022), no. 3, 241–248. Search in Google Scholar

KIRIŞCI M.—ŞIMŞEK, N.: Neutrosophic normed spaces and statistical convergence, J. Anal. 28 (2020), no. 4, 1059–1073. Search in Google Scholar

KIŞI,Ö.: Ideal convergence of sequences in neutrosophic normed spaces,J.Intell. Fuzzy Systems 41 (2021), no. 2, 2581–2590. Search in Google Scholar

KOSTYRKO, P.—˘SALÁT, T.—WILCZYNSSKI, W.: ℐ-convergence, Real Anal. Exchange 26 (2000), no. 2, 669–686. Search in Google Scholar

KRAMOSIL, I.—MICHALEK, J.: Fuzzy metric and statistical metric spaces,Kybernetika 11 (1975), no. 5, 336–344. Search in Google Scholar

LAEL, F.—NOUROUZI, K.: Some results on the IF-normed spaces, Chaos Solitons Fractals 37 (2008), no. 3, 931–939. Search in Google Scholar

MENGER, K.: Statistical metrics, Proc. Nat. Acad. Sci. U.S.A 28 (1942), 535–537. Search in Google Scholar

MOHIUDDINE, S. A.—ASIRI, A.—HAZARIKA, H.: Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems, Int.J.Gen. Syst. 48 (2019), no. 5, 492–506. Search in Google Scholar

MOHIUDDINE, S. A.—DANISH LOHANI, Q. M.: On generalized statistical convergence in intuitionistic fuzzy normed space, Chaos Solitons Fractals 42 (2009), no. 3, 1731–1737. Search in Google Scholar

MURSALEEN, M.—MOHIUDDINE, S. A.: On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, J. Comput. Appl. Math. 233 (2009), no. 2, 142–149. Search in Google Scholar

MURSALEEN, M.—MOHIUDDINE, S. A.—EDELY, O. H. H.: On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl. 59 (2010), no. 2, 603–611. Search in Google Scholar

NABIEV, A. A.—PEHLIVAN, S.—GÜRDAL, M.: On I−Cauchy sequences,Taiwanese J. Math. 11 (2007), no. 2, 569–566. Search in Google Scholar

PARK,J.H.: Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 22 (2004), no. 5, 1039–1046. Search in Google Scholar

RATH, D.—TRIPATHY, B. C.: Matrix maps on sequence spaces associated with sets of integers, Indian J. Pure Appl. Math. 27 (1996), 197–206. Search in Google Scholar

SAVAŞ, E.—DAS, P.: A generalized statistical convergence via ideals, Appl. Math. Lett. 24 (2011), no. 6, 826–830. Search in Google Scholar

SAVAŞ, E.—GÜRDAL, M.: Certain summability methods in intuitionistic fuzzy normed spaces, J. Intell. Fuzzy Systems 27 (2014), no. 4, 1621–1629. Search in Google Scholar

SAVAŞ, E.—GÜRDAL, M.: A generalized statistical convergence in intuitionistic fuzzy normed spaces, Science Asia 41 (2015), nno. 4, 289–294. Search in Google Scholar

SAVAŞ, E.—GÜRDAL, M.: Ideal convergent function sequences in random 2-normed spaces, Filomat 30 (2016), no. 3, 557–567. Search in Google Scholar

SMARANDACHE, F.: Neutrosophy. Neutrosophic Probability, Set, and Logic. Ed. of ProQuest Information & Learning, Ann Arbor, Michigan, USA, 1998. Search in Google Scholar

SMARANDACHE, F.: Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure Appl. Math. 24 (2005), no. 3, 287–297. Search in Google Scholar

KHAN, V. A.—ARSHAD, M.: On some properties of Nörlund ideal convergence of sequence in neutrosophic normed spaces, Ital. J. Pure Appl. Math. 40 (2023) 1–8. Search in Google Scholar

KHAN, V. A.—ARSHAD, M.—KHAN, M. D.: Some results of neutrosophic normed space VIA Tribonacci convergent sequence spaces, J. Inequal. Appl. 2022, paper no. 42, 27 pp. Search in Google Scholar

KHAN, V. A.— ARSHAD, M.—–ALAM, M.: Riesz deal convergence in neutrosophic normed spaces. J. Intell. Fuzzy Systems. 42 (2023). no. 4, 1–10. Search in Google Scholar

TAN, B.—WEN,Z.Y.: Some properties of the tribonacci sequence, European J. Combin. 28 (2007), no. 6, 1703–1719. Search in Google Scholar

TRIPATHY, B. C.—HAZARIKA, B.—CHOUDHARY, B.: Lacunary ℐ−convergent sequences, Kyungpook Math. J. 52 (2012), no. 4, 473–482. Search in Google Scholar

TRIPATHY, B. C.—SEN, M.: On fuzzy ℐ−convergent difference sequence spaces, J. Intell. Fuzzy Syst. 25 (2013), no. 3, 643–647. Search in Google Scholar

WILANSKY, A.: Summability through functional analysis. North-Holland Mathematics Stud. Vol. 85. Notas Mat. Vol. 91. [Mathematical Notes] North-Holland Publishing Co., Amsterdam-New York-Oxford, 1984. Search in Google Scholar

YAYING, T.—HAZARIKA, B.: On sequence spaces defined by the domain of a regular tribonacci matrix, Math. Slovaca 70 (2020), no. 3, 697–706. Search in Google Scholar

ZADEH, L. A.: Fuzzy sets,Inf.Control 8 (1965), no. 3, 338–353. Search in Google Scholar

Language:
English
Publication timeframe:
3 times per year
Journal Subjects:
Mathematics, General Mathematics