FRIDY, J. A.—ORHAN, C.: Lacunary statistical convergence, Pacific J. Math. 160 (1993), no. 1, 43–51.Search in Google Scholar
GEORGE, A.—VEERAMANI, P.: On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems. 90 (1997), no. 3, 365–368.Search in Google Scholar
GÜRDAL, M.—ŞAHINER, A.: Extremal ℐ-limit points of double sequences, Appl. Math. E-Notes 8 (2008), 131–137.Search in Google Scholar
KADAK, U.—MOHIUDDINE, S. A.: Generalized statistically almost convergence based on the difference operator which includes the (p,q)-Gamma function and related approximation theorems,Results Math. 73 (2018), no. 1, Paper no. 9, 31 pp.Search in Google Scholar
KALEVA, O.—SEIKKALA, S.: On fuzzy metric spaces, Fuzzy Sets and Systems. 12 (1984), no. 3, 215–229.Search in Google Scholar
KARAKUS, S.—DEMIRCI, K.—DUMAN, O.: Statistical convergence on intuitionistic fuzzy normed spaces, Chaos Solitons Fractals 35 (2008), no. 4, 215–229.Search in Google Scholar
KHAN, V. A.—AHMAD, M.—FATIMA, H.—KHAN, F. M.: On some results in intuitionistic fuzzy ideal convergence double sequence spaces, Adv. Difference Equ. 2019 (2019), no. 1, Paper No. 375, 10 pp.Search in Google Scholar
KHAN, V. A.—FATIMA, H.—ALTAF, H.—LOHANI, Q. M. D.—SRIVASTAVA, H. M.: Intuitionistic fuzzy I-convergent sequence spaces defined by compact operator, Cogent Math. 3 (2016), no. 1, Article ID: 1267904.Search in Google Scholar
KHAN, V. A.—KARA, E.—ALTAF, H.—KHAN, N.—AHMAD, M.: Intuitionistic fuzzy ℐ-convergent Fibonacci difference sequence spaces, J. Inequal. Appl. 2019 (2019), Article no. 202, 7 pp.Search in Google Scholar
KHAN, V. A.—RAHAMAN, S. K. A.: Intuitionistic fuzzy tribonacci convergent sequence spaces, Math. Slovaca 72 (2022), no. 3, 693–708.Search in Google Scholar
KIRIŞCI, M.—ŞIMŞEK, N.: Neutrosophic metric spaces, Math. Sci. 14 (2022), no. 3, 241–248.Search in Google Scholar
KIRIŞCI M.—ŞIMŞEK, N.: Neutrosophic normed spaces and statistical convergence, J. Anal. 28 (2020), no. 4, 1059–1073.Search in Google Scholar
KIŞI,Ö.: Ideal convergence of sequences in neutrosophic normed spaces,J.Intell. Fuzzy Systems 41 (2021), no. 2, 2581–2590.Search in Google Scholar
KOSTYRKO, P.—˘SALÁT, T.—WILCZYNSSKI, W.: ℐ-convergence, Real Anal. Exchange 26 (2000), no. 2, 669–686.Search in Google Scholar
KRAMOSIL, I.—MICHALEK, J.: Fuzzy metric and statistical metric spaces,Kybernetika 11 (1975), no. 5, 336–344.Search in Google Scholar
LAEL, F.—NOUROUZI, K.: Some results on the IF-normed spaces, Chaos Solitons Fractals 37 (2008), no. 3, 931–939.Search in Google Scholar
MENGER, K.: Statistical metrics, Proc. Nat. Acad. Sci. U.S.A 28 (1942), 535–537.Search in Google Scholar
MOHIUDDINE, S. A.—ASIRI, A.—HAZARIKA, H.: Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems, Int.J.Gen. Syst. 48 (2019), no. 5, 492–506.Search in Google Scholar
MOHIUDDINE, S. A.—DANISH LOHANI, Q. M.: On generalized statistical convergence in intuitionistic fuzzy normed space, Chaos Solitons Fractals 42 (2009), no. 3, 1731–1737.Search in Google Scholar
MURSALEEN, M.—MOHIUDDINE, S. A.: On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, J. Comput. Appl. Math. 233 (2009), no. 2, 142–149.Search in Google Scholar
MURSALEEN, M.—MOHIUDDINE, S. A.—EDELY, O. H. H.: On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl. 59 (2010), no. 2, 603–611.Search in Google Scholar
NABIEV, A. A.—PEHLIVAN, S.—GÜRDAL, M.: On I−Cauchy sequences,Taiwanese J. Math. 11 (2007), no. 2, 569–566.Search in Google Scholar
PARK,J.H.: Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 22 (2004), no. 5, 1039–1046.Search in Google Scholar
RATH, D.—TRIPATHY, B. C.: Matrix maps on sequence spaces associated with sets of integers, Indian J. Pure Appl. Math. 27 (1996), 197–206.Search in Google Scholar
SAVAŞ, E.—DAS, P.: A generalized statistical convergence via ideals, Appl. Math. Lett. 24 (2011), no. 6, 826–830.Search in Google Scholar
SAVAŞ, E.—GÜRDAL, M.: Certain summability methods in intuitionistic fuzzy normed spaces, J. Intell. Fuzzy Systems 27 (2014), no. 4, 1621–1629.Search in Google Scholar
SAVAŞ, E.—GÜRDAL, M.: A generalized statistical convergence in intuitionistic fuzzy normed spaces, Science Asia 41 (2015), nno. 4, 289–294.Search in Google Scholar
SAVAŞ, E.—GÜRDAL, M.: Ideal convergent function sequences in random 2-normed spaces, Filomat 30 (2016), no. 3, 557–567.Search in Google Scholar
SMARANDACHE, F.: Neutrosophy. Neutrosophic Probability, Set, and Logic. Ed. of ProQuest Information & Learning, Ann Arbor, Michigan, USA, 1998.Search in Google Scholar
SMARANDACHE, F.: Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure Appl. Math. 24 (2005), no. 3, 287–297.Search in Google Scholar
KHAN, V. A.—ARSHAD, M.: On some properties of Nörlund ideal convergence of sequence in neutrosophic normed spaces, Ital. J. Pure Appl. Math. 40 (2023) 1–8.Search in Google Scholar
KHAN, V. A.—ARSHAD, M.—KHAN, M. D.: Some results of neutrosophic normed space VIA Tribonacci convergent sequence spaces, J. Inequal. Appl. 2022, paper no. 42, 27 pp.Search in Google Scholar
KHAN, V. A.— ARSHAD, M.—–ALAM, M.: Riesz deal convergence in neutrosophic normed spaces. J. Intell. Fuzzy Systems. 42 (2023). no. 4, 1–10.Search in Google Scholar
TAN, B.—WEN,Z.Y.: Some properties of the tribonacci sequence, European J. Combin. 28 (2007), no. 6, 1703–1719.Search in Google Scholar
TRIPATHY, B. C.—HAZARIKA, B.—CHOUDHARY, B.: Lacunary ℐ−convergent sequences, Kyungpook Math. J. 52 (2012), no. 4, 473–482.Search in Google Scholar
TRIPATHY, B. C.—SEN, M.: On fuzzy ℐ−convergent difference sequence spaces, J. Intell. Fuzzy Syst. 25 (2013), no. 3, 643–647.Search in Google Scholar
WILANSKY, A.: Summability through functional analysis. North-Holland Mathematics Stud. Vol. 85. Notas Mat. Vol. 91. [Mathematical Notes] North-Holland Publishing Co., Amsterdam-New York-Oxford, 1984.Search in Google Scholar
YAYING, T.—HAZARIKA, B.: On sequence spaces defined by the domain of a regular tribonacci matrix, Math. Slovaca 70 (2020), no. 3, 697–706.Search in Google Scholar