1. bookVolume 78 (2021): Issue 1 (October 2021)
Journal Details
License
Format
Journal
eISSN
1338-9750
First Published
12 Nov 2012
Publication timeframe
3 times per year
Languages
English
access type Open Access

Local Properties of Entropy for Finite Family of Functions

Published Online: 01 Jan 2022
Volume & Issue: Volume 78 (2021) - Issue 1 (October 2021)
Page range: 43 - 58
Received: 20 Oct 2020
Journal Details
License
Format
Journal
eISSN
1338-9750
First Published
12 Nov 2012
Publication timeframe
3 times per year
Languages
English
Abstract

In this paper we consider the issues of local entropy for a finite family of generators (that generates the semigroup). Our main aim is to show that any continuous function can be approximated by s-chaotic family of generators.

Keywords

[1] ADLER, R. L.—KONHEIM, A. G.—MCANDREW, M. H.: Topological entropy, Trans. Am. Math. Soc. 114 (1965), 309–319.10.1090/S0002-9947-1965-0175106-9 Search in Google Scholar

[2] ALSEDÁ, L.—LLIBRE, J.—MISIUREWICZ, M.: Combinatorial Dynamics and Entropy in Dimension One, World Sci., 1993.10.1142/1980 Search in Google Scholar

[3] BIŚ, A.: Entropies of a semigroup of maps, Discrete Contin. Dynam. Syst. 11 (2004), no. (2-3), 639–648. Search in Google Scholar

[4] BIŚ, A.—URBAŃSKI, M.: Some remarks on topological entropy of a semigroup of continuous maps, Cubo 8 (2006), 63–71. Search in Google Scholar

[5] KOLYADA, S.—SNOHA, L.: Topological entropy of nonautonomous dynamical systems, Random Comput. Dynam. 4 (1996), no. (2-3), 205–233. Search in Google Scholar

[6] PAWLAK, R. J.—KORCZAK-KUBIAK, E.—LORANTY, A.: Measuring chaos by entropy for a finite family of functions, Chaos 30 (2020), no. 6, 063138, 8 pp. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo