Cite

[1] Gibson, L., Rosen, D. and Stucker, B., 2009, Additive manufacturing technologies: rapid prototyping to direct digital manufacturing, Springer New York Heidelberg Dordrecht London.10.1007/978-1-4419-1120-9_14 Search in Google Scholar

[2] EPMA, 2019, Introduction to Additive Manufacturing Technology, third edition, European Powder Metallurgy Association. https://www.epma.com/epma-free-publications/product/introduction-to-additive-manufacturing-brochure. Search in Google Scholar

[3] Meier, Ch., Penny, R., Zou, Y., Gibbs J. S. and Hart, A. J., 2014, “Thermophysical Phenomena in Metal Additive Manufacturing by Selective Laser Melting: Fundamentals, Modeling, Simulation and Experimentation”, Annual Review of Heat Transfer, 20, pp. 241-316. 10.1615/AnnualRevHeatTransfer.2018019042.10.1615/AnnualRevHeatTransfer.2018019042 Search in Google Scholar

[4] Yadroitsau, I., 2008, “Fabrication directe d’objets 3D par fusion sélective laser à partir des poudres métalliques”. PhD thesis, université Jean-Monnet. Search in Google Scholar

[5] Kozak, J., 2018, Mathematical Modelling of Advanced Manufacturing Processes. Institute of Aviation Scientific Publications Division, ISBN: 978-83-63539-49-8, Warsaw, Poland. Search in Google Scholar

[6] https://www.google.pl/search?q=ge+3d+printed+jet+engine&client=opera&biw=1240&bih=610&tbm=isch&tbo=u&source=univ&sa=X&ved=0ahuKEwiAycD_1snbAhXmd-poKHdPgCFMQsAQIlQE. Search in Google Scholar

[7] Kozak, J. and zakrzewski T., 2018, “Accuracy problems of additive manufacturing using SLS/SLM processes”, AIP Conference Proceedings.10.1063/1.5056273 Search in Google Scholar

[8] Carslow, H. S. and Jaeger, J. C., 1959, Conduction of Heat in Solids, Oxford university Press, Oxford, uK. Search in Google Scholar

[9] Alexiades, v. and Solomon, A. D., 1993, Mathematical Modeling of Melting and Freezing Processes, Washington: Hemisphere Publishing Corporation.10.1115/1.2930032 Search in Google Scholar

[10] Cohen, M.I. and Epperson, J.P., 1968, “Application of Lasers to Microelectronic Fabrication”, Advances in Electronics and Electron Physics, pp. 139-186. Search in Google Scholar

[11] Bossak, M., and Kozak, J., 2003, “Selected problems of Designing and Manufacturing MEMS-Accelerometers”. Proceed. Of Symposium on Novel Vehicle Concepts and Emerging Vehicle Technologies, Brussels. Search in Google Scholar

[12] Egger, G., Gygax, P.-E., Glardon, R. and Karapatis, N. P., 1999, “Optimization of powder layer density in selective laser sintering”. 10th Solid Freeform Fabrication Proceedings, pp. 255-263. Search in Google Scholar

[13] Ahmed H. Maamoun, Yi F. Xue, Mohamed A. Elbestawi, Stephen C. veldhuis, 2018, “Effect of Selective Laser Melting Process Parameters on the Quality of Al Alloy Parts: Powder Characterization, Density, Surface Roughness, and Dimensional Accuracy”, Materials, 11(12), p. 2343. 10.3390/ma11122343.10.3390/ma11122343631685130469468 Search in Google Scholar

[14] Gibbings, J.C., 2011, Dimensional Analysis, Springer, London.10.1007/978-1-84996-317-6 Search in Google Scholar

[15] Chunlei Qiu, Chinnapat Panwisawas, Mark Ward, Hector C. Basoalto, Jeffery W. Brooks, Moataz M. Attallah, 2015, “On the role of melt flow into the surface structure and porosity development during selective laser melting”, Acta Materialia, 96, pp. 72-79.10.1016/j.actamat.2015.06.004 Search in Google Scholar

[16] Sola, A. and Nouri, A., 2019, “Microstructural porosity in additive manufacturing: The formation and detection of pores in metal parts fabricated by powder bed fusion”, Journal of Advanced Manufacturing and Processing, 1(3). 10.1002/amp2.10021.10.1002/amp2.10021 Search in Google Scholar

eISSN:
2545-2835
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Materials Sciences, Physics