Open Access

The Second Axelrod Tournament: A Monte Carlo Exploration of Uncertainty About the Number of Rounds in Iterated Prisoner’s Dilemma

,  and   
Apr 01, 2025

Cite
Download Cover

Akin, E. (2016). The iterated Prisoner’s Dilemma: good strategies and their dynamics. In A. Idris (Ed.), Ergodic Theory (pp. 77-107). De Gruyter. https://doi.org/doi:10.1515/9783110461510-004 Search in Google Scholar

Axelrod, R. (1984). The Evolution of Cooperation. Basic Books. Search in Google Scholar

Axelrod, R., & Hamilton, W. D. (1981). The evolution of cooperation. Science, 211(4489), 1390-1396. Search in Google Scholar

Ben-Porath, E. (1990). The Complexity of Computing a Best Response Automaton in Repeated Games with Mixed Strategies. Games and Economic Behavior, 2, 1–12. https://doi.org/https://doi.org/10.1016/0899-8256(90)90010-R Search in Google Scholar

Chiong, R., & Jankovic, L. (2008). Learning game strategy design through iterated Prisoner’s Dilemma. Int. J. Comput. Appl. Technol., 32, 216-223. Search in Google Scholar

Chong, S. Y., Humble, J., Kendall, G., Li, J., & Yao, X. (2007). Iterated Prisoner’s Dilemma and Evolutionary Game Theory. In The Iterated Prisoners’ Dilemma (Vol. Volume 4, pp. 23-62). WORLD SCIENTIFIC. Search in Google Scholar

Leonardos Stefanos, P. G. (2012). Exploration-Exploitation Tradeoffs in Multi-Agent Systems: Catastrophe theory meets game theory. Journal of Artificial Intelligence Research, 304, 103653. https://doi.org/https://doi.org/10.1016/j.artint.2021.103653 Search in Google Scholar

Leyton-Brown, K., & Shoham, Y. (2008). Essentials of Game Theory: A Concise Multidisciplinary Introduction (Vol. 2). Morgan and Claypool Publishers. Search in Google Scholar

Meng Chen-Lu, P. R. (2001). The Iterated Prisoner’s Dilemma: early experiences with Learning Classifier System-based simple agents. Decision Support Systems, 31(4), 379-403. https://doi.org/https://doi.org/10.1016/S0167-9236(00)00137-8 Search in Google Scholar

Myerson, R. B. (1991). Game Theory: Analysis of Conflict (H. U. Press, Ed.). Harvard University Press. Search in Google Scholar

Nachbar, J. (2005). Beliefs and Learning in Repeated Games. Econometrica, 73(2), 459-480. http://www.jstor.org/stable/3598794 Search in Google Scholar

Nash, J. (1950). Equilibrium Points in n-Person Games. Proceedings of the National Academy of Sciences, 36, 48–49. Search in Google Scholar

Project, T. A. (2015). Axelrod: second tournament. https://axelrod.readthedocs.io/en/fix-documentation/reference/overview_of_strategies.html#axelrod-s-second-tournament Search in Google Scholar

Press, W. H. & Dyson, F. J. (2012) Iterated Prisoners Dilemma contains strategies that dominate any evolutionary opponent. Proc. Natl. Acad Sci. USA 109, 10409–10413. Search in Google Scholar

Rothe, J. (2010). Economics and Computation - An Introduction to Algorithmic Game and Fair Division Theory, Computational Sociial Choice,and Fair Division. Springer Search in Google Scholar

Thomopoulos, N. (2013). Essentials of Monte Carlo Simulation: Statistical Methods for Building Simulation Models. Springer. Search in Google Scholar

Tutzauer, F. (2007). A matrix approach to generalizing Axelrod-type tournaments. Journal of Mathematical Sociology, 31(3), 249-266. Search in Google Scholar

Tychonov, A. (1935). Ein Fixpunktsatz. Mathematische Annalen, 111, 767–776. Vincent, F. M., & Fryer, D. E. A. (2021). Top score in Axelrod Tournament. arXiv preprint arXiv:2104.03347. Search in Google Scholar

Zhou, Y. H., Yu, J., & Wang, L. (2011). A new proof of existence of equilibria in infinite normal form games. Applied Mathematics Letters, 24(3), 253-256. https://doi.org/https://doi.org/10.1016/j.aml.2010.09.014 Search in Google Scholar