1. bookVolume 16 (2021): Issue 2 (December 2021)
Journal Details
License
Format
Journal
eISSN
1338-7278
First Published
29 Mar 2013
Publication timeframe
2 times per year
Languages
English
Open Access

Behaviour of Self-Compacting Concrete incorporating Natural Perlite used as Part of Cement and as Aggregates

Published Online: 30 Dec 2021
Volume & Issue: Volume 16 (2021) - Issue 2 (December 2021)
Page range: 115 - 132
Journal Details
License
Format
Journal
eISSN
1338-7278
First Published
29 Mar 2013
Publication timeframe
2 times per year
Languages
English

[1] Okamura, H. (1997). Self-compacting high performance concrete. Concr.Int. 19(7), 50–54. Search in Google Scholar

[2] Okamura, H. & Ouchi, M. (2003). Self-compacting concrete. J. Adv. Concr, Technol, 15.10.3151/jact.1.5 Search in Google Scholar

[3] Silva, P. R. & Brito, J. (2015). Experimental study of the porosity and microstructure of self-compacting concrete (SCC) with binary and ternary mixes of fly ash and limestone filler. Construction and Building Materials. 86, 101-112.http://dx.doi.org/10.1016/j.conbuildmat.2015.03.110.10.1016/j.conbuildmat.2015.03.110 Search in Google Scholar

[4] Youjun, X., Baoju, L., Jian, Y. & Shiqiong, Z. (2002). Optimum mix parameters of high-strength self-compacting concrete with ultrapulverized fly ash. Cem. Concr. Res. 32, 477.10.1016/S0008-8846(01)00708-6 Search in Google Scholar

[5] Ivanauskas, E., Rudzionis, Z., Navickas, A. A. & Dauksys, M. (2008). Investigation of shale ashes influences on the self-compacting concrete properties. Mater. Sci. (Medziagotyra). 14(3), 247–253. Search in Google Scholar

[6] Chandra, S. & Berntsson, L. (2002). Lightweight aggregate concrete. Science, technology, and applications NY, William Andrew Publishing, Noyes. Search in Google Scholar

[7] Demirboga, R., O¨ru¨ng, I. R. & Gu¨l, l. (2001). Effects of expanded perlite aggregate and mineral admixtures on the compressive strength of low-density concretes, Cem Concr Res. 31 (11), 1627–1632. Search in Google Scholar

[8] Urhan, S. (1987). Alkali silica and pozzolanic reactions in concrete Part 2: Observations on expanded perlite aggregate concretes. Cem Concr Res. 17(3), 465–77.10.1016/0008-8846(87)90010-X Search in Google Scholar

[9] Erdem, T. K., Meral, C., Tokyay, M. & Erdogan, T. Y. (2007). Use of perlite as a pozzolanic addition in producing blended cements. Cement & Concrete Composites. 29, 13–21. DOI: 10.1016/j.cemconcomp.2006.07.01810.1016/j.cemconcomp.2006.07.018 Search in Google Scholar

[10] Terkman, I. &, Kantarci, A. (2006). Effect of expanded perlite aggregate and different conditions curing of the drying shrinkage of self-compacting concrete. Indian journal of engineering& Materials sciences. 13(6), 247-252. Search in Google Scholar

[11] Yu, L. H., Ou1, H. & Lee, L. L. (2003). Investigation on pozzolanic effect of perlite powder in concrete. Cement and Concrete Research. 33(1), 73–76.10.1016/S0008-8846(02)00924-9 Search in Google Scholar

[12] Bhuvaneshwari, K., Dhanalakshmi, G. & Kaleeswari, G. (2017). Experimental study on lightweight concrete using perlite. International Research Journal of Engineering and Technology. 4(4), 2451-2455. Search in Google Scholar

[13] Gunning, D. F., Eng, P., McNeal & Associates Consultants Ltd. (1994). Perlite Market Study for British Columbia. Search in Google Scholar

[14] Johari, M. A. M., Brooksb, J. J., Kabira, S. & Rivard, P. (2011). Influence of supplementary cementitious materials on engineering properties of high strength concrete. Construction and Building Materials, 25(5), 2639-2648. https://doi.org/10.1016/j.conbuildmat.2010.12.013.10.1016/j.conbuildmat.2010.12.013 Search in Google Scholar

[15] Yu, L. H., Ou, H. & Zhou, S. X. (2010). Influence of Perlite Admixture on Pore Structure of Cement Paste. Advanced Materials Research. 97, 552-555.10.4028/www.scientific.net/AMR.97-101.552 Search in Google Scholar

[16] Esfandiari, J. & Loghmani, P. (2019). Effect of perlite powder and silica fume on the compressive strength and microstructural characterization of self-compacting concrete with lime-cement binder. Measurement. 147, 106846.10.1016/j.measurement.2019.07.074 Search in Google Scholar

[17] Karein, S.,Motahari, M. et al. (2018). Effects of the mechanical milling method on transport properties of self-compacting concrete containing perlite powder as a supplementary cementitious material. Construction and Building Materials. 172, 677-684.10.1016/j.conbuildmat.2018.03.205 Search in Google Scholar

[18] Sičáková,A., Figmigová,E. & Špak, M. (2020). Comparison of the strength development of binary and ternary cements containing perlite powder. SSP – Journal of Civil Engineering. 15(1), 47-57. DOI: 10.1515/sspjce-2020-0006.10.1515/sspjce-2020-0006 Search in Google Scholar

[19] Mansour, S.M. (2020). Physical-mechanical properties of steel fibre-reinforced self-compacting concrete containing natural perlite addition, International Journal of Microstructure and Materials Properties.15 (2), 122-140. https://doi/abs/10.1504/IJMMP.2020.106923 Search in Google Scholar

[20] El Mir, A., Nehme, S.G. & Assaad, J.J. (2020). Durability of self-consolidating concrete containing natural waste perlite powders, Heliyon.6. https://doi.org/10.1016/j.heliyon.2020.e0316510.1016/j.heliyon.2020.e03165 Search in Google Scholar

[21] Mansour, S.M., Haddadou, N. & Chaid, R. (2021). Valorization of powder of volcanic rocks used as cement substitution in self-compacting concrete, European Journal of Environmental and Civil Engineering, DOI: 10.1080/19648189.2021.191678210.1080/19648189.2021.1916782 Search in Google Scholar

[22] Annual Book of ASTM Standards, ASTM C 618-01. (2002). Standard specification for coal fly ash and raw or calcined natural pozzolan for use as a mineral admixture in concrete. American Society for Testing and Materials, PA. Search in Google Scholar

[23] Wasserman,R. & Bentur, A. (1996). Interfacial inter-actions in lightweight aggregate concretes and their influence on the concrete strength. Cem Concr Compos. 18(1), 67–76.10.1016/0958-9465(96)00002-9 Search in Google Scholar

[24] Zhang, M. H. & Gjorv, O. E. (1990). Pozzolanic reactivity of lightweight aggregates. Cem Concr Res. 20(6), 884–90.10.1016/0008-8846(90)90050-8 Search in Google Scholar

[25] NF EN 12350-8. (2010). Essai pour béton frais – partie 8: béton autoplaçant– Essai d'étalement au cône d'Abrams. Search in Google Scholar

[26] NF EN 12350-10. (2010). Essai pour béton frais – partie 10: béton autoplaçant– Essai à la boite en L. Search in Google Scholar

[27] NF EN 12350-11. (2010). Essai pour béton frais – partie 1: béton autoplaçant– Essai de stabilité au tamis. Search in Google Scholar

[28] EFNARC. (2005). European guidelines for self-compacting concrete: specification, production and use. Self-compacting concrete European project group. Search in Google Scholar

[29] NF EN 12390-2. (2001). Essais pour béton durci – Partie 2: confection et conservation des éprouvettes pour essais de résistance. Search in Google Scholar

[30] NF EN 12390-3. (2001). Essais pour béton durci - Partie 3: résistance à la compression des éprouvettes. Search in Google Scholar

[31] NF EN 12390-5. (2001). Essais pour béton durci - Partie 5: résistance à la flexion sur éprouvettes. Search in Google Scholar

[32] Krautkramer, J. H. (1977). Ultrasonic Testing of Materials. Springer-Verlag, Berlin.10.1007/978-3-662-02296-2 Search in Google Scholar

[33] Markham, M. F. (1957). Measurement of elastic constants by the ultrasonic pulse method. British Journal of Applied Physics. 8(6), 56-63.10.1088/0508-3443/8/S6/312 Search in Google Scholar

[34] NFP18-418. (1989). Béton - Auscultation sonique- Mesure du temps de propagation d’ondes soniques dans le béton. Search in Google Scholar

[35] Gupta, T., Chaudhary, S. & Sharma, R. K. (2016). Mechanical and durability properties of waste rubber fiber concrete with and without silica fume. J. Clean. Prod. 112, 702-711. https://doi.org/10.1016/j.jclepro.2015.07.08110.1016/j.jclepro.2015.07.081 Search in Google Scholar

[36] NF EN 12350-6. (2012). Essais pour béton frais - Partie 6: masse volumique. Search in Google Scholar

[37] NF EN 12350-7. (2012). Essais pour béton durci - Partie 7: masse volumique. Search in Google Scholar

[38] Mansour, S.M. (2020). Behavior of self- compacting concrete incorporating calcined pyrophyllite as supplementary cementitious material. J. Build. Mater. Struct. 7 (2), 119-129. https://doi.org/10.5281/zenodo.4005645 Search in Google Scholar

[39] Wild, S., Khatib, J. M. & Jones, A. (1996). Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cem Concr Res. 26(10), 1537–44. https://doi.org/10.1016/0008-8846(96)00148-210.1016/0008-8846(96)00148-2 Search in Google Scholar

[40] Neville, A. M. & Brooks, J. J. (1987). Concrete technology. USA, Longman Group UK Limited. Search in Google Scholar

[41] Whitehurst, E. A. (1951). Soniscope tests concrete structures, Research and development laboratories of the portland cement association. J Am Concr Inst. 47, 433–44. Search in Google Scholar

[42] Jones, R. & Gatfield, E. N.(1955). Testing concrete by an ultrasonic pulse technique. London, H.M. Stationery Office. Search in Google Scholar

[43] Fascicule 62, CCTG, DTU P 18-702. (2000). Règles techniques de conception et de calcul des ouvrages et constructions en béton armé suivant la méthode des états limites, Règles BAEL 91. Search in Google Scholar

Recommended articles from Trend MD