[
[Avron 96] Avron, A., ‘The Method of Hypersequents in the Proof Theory of Propositional Non-Classical Logics’, in: W. Hodges et al. (ed.), Logic: From Foundations to Applications, pp. 1–32, Oxford Science Publication, Oxford, 1996.]Search in Google Scholar
[
[Belnap 82] Belnap, N., D. ‘Display Logic’, Journal of Philosophical Logic, 11:375– 417, 1982.]Search in Google Scholar
[
[Curry 63] Curry H. B., Foundations of Mathematical Logic, McGraw-Hill, New York 1963.]Search in Google Scholar
[
[Fitting 84] Fitting, M., Proof Methods for Modal and Intuitionistic Logics, Reidel, Dordrecht 1983.]Search in Google Scholar
[
[Gentzen 34] Gentzen, G., ‘Untersuchungen über das Logische Schliessen’, Mathematische Zeitschrift 39:176–210 and 39:405–431, 1934.]Search in Google Scholar
[
[Indrzejczak 96] Indrzejczak, A., ‘Cut-free Sequent Calculus for S5’, Bulletin of the Section of Logic 25(2):95–102, 1996.]Search in Google Scholar
[
[Indrzejczak 97] Indrzejczak, A., ‘Generalised Sequent Calculus for Propositional Modal Logics’, Logica Trianguli 1:15–31, 1997.]Search in Google Scholar
[
[Indrzejczak 00] Indrzejczak, A., ‘Multiple Sequent Calculus for Tense Logics’, Abstracts of AiML and ICTL 2000:93–104, Leipzig 2000.]Search in Google Scholar
[
[Indrzejczak 03] Indrzejczak, A., ‘A Labelled Natural Deduction System for Linear Temporal Logic’, Studia Logica 75/3:345–376, 2003.]Search in Google Scholar
[
[Indrzejczak 10] Indrzejczak, A., Natural Deduction, Hybrid Systems and Modal Logics, Springer 2010.]Search in Google Scholar
[
[Indrzejczak 19] Indrzejczak, A., ‘Cut Elimination in Hypersequent Calculus for Some Logics of Linear Time’, The Review of Symbolic Logic, 12/4:806–822, 2019.]Search in Google Scholar
[
[Jaśkowski 34] Jaśkowski, S., ‘On the Rules of Suppositions in Formal Logic’ Studia Logica 1:5–32, 1934.]Search in Google Scholar
[
[Kashima 94] Kashima, R., ‘Cut-free sequent calculi for some tense logics’, Studia Logica, 53:119–135, 1994.]Search in Google Scholar
[
[Nishimura 80] Nishimura, H., ‘A Study of Some Tense Logics by Gentzen’s Sequential Method’, Publications of the Research Institute for Mathematical Sciences, Kyoto University, 16:343–353, 1980.]Search in Google Scholar
[
[Poggiolesi 11] Poggiolesi F., Gentzen Calculi for Modal Propositional Logic, Springer 2011.]Search in Google Scholar
[
[Trzęsicki 80] Trzęsicki, K., ‘Badania nad wnioskowaniem logicznym’, Białystok 1980.]Search in Google Scholar
[
[Trzęsicki 84] Trzęsicki, K., ‘Gentzen-style axiomatization of tense logic’, Bulletin of the Section of Logic 13(2):75–84, 1984.]Search in Google Scholar
[
[Trzęsicki 08] Trzęsicki, K., Logika temporalna. Wybrane zagadnienia, Białystok 2008.]Search in Google Scholar
[
[Wansing 99] Wansing, H., Displaying Modal Logics, Kluwer Academic Publishers, Dordrecht 1999.]Search in Google Scholar
[
[Wansing 02] Wansing, H., ‘Sequent Systems for Modal Logics’, Kluwer Academic Publishers, Dordrecht 1999. w: D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, vol II, pp. 89–133, Reidel Publishing Company, Dordrecht 1984.]Search in Google Scholar
[
[Zeman 73] Zeman, J., J., Modal Logic, Oxford University Press, Oxford 1973.]Search in Google Scholar