1. bookVolume 39 (2014): Issue 1 (December 2014)
Journal Details
License
Format
Journal
eISSN
2199-6059
ISSN
0860-150X
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Open Access

The Use of Principal Component Analysis and Logistic Regression in Prediction of Infertility Treatment Outcome

Published Online: 30 Dec 2014
Volume & Issue: Volume 39 (2014) - Issue 1 (December 2014)
Page range: 7 - 23
Journal Details
License
Format
Journal
eISSN
2199-6059
ISSN
0860-150X
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English

Agarwal, S., Jacobs Jr., D. R., Vaidya, D. Sibley, Ch. T., Jorgensen, N. W., Rotter, J. I., Chen, Y.-D. I., et al. (2012). Metabolic Syndrome Derived from Principal Component Analysis and Incident Cardiovascular Events: The Multi Ethnic Study of Atherosclerosis (MESA) and Health, Aging, and Body Composition (Health ABC). Cardiology Research and Practice, 2012. DOI:10.1155/2012/919425.10.1155/2012/919425Search in Google Scholar

Aguilera, A. M., Escabias, M., & Valderrama, M. J. (2006). Using principal compo- nents for estimating logistic regression with high-dimensional multicollinear data. Computational Statistics & Data Analysis, 50(8), 1905-1924.10.1016/j.csda.2005.03.011Search in Google Scholar

Akinsola, O. M., Nwagu, B. I., Orunmuyi, M., Iyeghe-Erakpotobor, G. T., Eze, E. D., Abanikannda, O. T. F., Onaadepo, O., Okuda, E. U., & Louis, U. (2014). Prediction of bodyweight from body measurements in rabbits using principal component analysis. Annals of Biological Sciences, 2(1), 1-6.Search in Google Scholar

Belasco, E., Philips, B. U., & Gong, G. (2012). The Health Care Access Index as a Determinant of Delayed Cancer Detection Through Principal Component Analysis. In P. Sanguansat (Ed.), Principal Component Analysis - Multidis- ciplinary Applications (pp. 143-166). InTech. DOI:10.5772/38460.10.5772/38460Search in Google Scholar

Biffi, A., Anderson, Ch. D., Nalls, M. A., Rahman, R., Sonni, A., Cortellini, L., Rost, N. S., et al. (2010). Principal-Component Analysis for Assessment of Population Stratification in Mitochondrial Medical Genetics. The American Journal of Human Genetics, 86(6), 904-917.10.1016/j.ajhg.2010.05.005Search in Google Scholar

Brzyski, P., Tobiasz-Adamczyk, B., & Knurowski T. (2012). Trafność i rzetelność skali GARS w populacji osob w starszym wieku w Polsce, Gerontologia Pol- ska, 20(3), 109-117.Search in Google Scholar

Czernyszewicz, E. (2008). Zastosowanie analizy głownych składowych do opisu kon- sumenckiej struktury jakości jabłek. Żywność. Nauka. Technologia. Jakość, 2(57), 119-127.Search in Google Scholar

Daszykowski,M., &Walczak, B. (2008). Analiza czynnikow głownych i inne metody eksploracji danych. In D. Zuba & A. Parczewski (Eds.), Chemometria w ana- lityce. Krakow: IES.Search in Google Scholar

Daszykowski, M., Walczak, B., & Massart, D. L. (2001). Looking for natural pat- terns in data: Part 1. Density-based approach. Chemometrics and Intelligent Laboratory Systems, 56, 83-92.10.1016/S0169-7439(01)00111-3Search in Google Scholar

Duch, W., Korbicz, J., Rutkowski, L., & Tadeusiewicz, R. (2000). Biocybernetyka i Inżynieria Biomedyczna 2000. Tom 6: Sieci neuronowe. Warszawa: Aka- demicka Oficyna Wydawnicza Exit.Search in Google Scholar

Fisher, R., & MacKenzie, W. (1923). Studies in crop variation II. The manurial response of different potato varieties. Journal of Agricultural Science, 13, 311-320.10.1017/S0021859600003592Search in Google Scholar

Furman-Haran, E., Shapiro Feinberg, M., Badikhi, D., Eyal, E., Zehavi, T., & De- gani, H. (2014). Standardization of Radiological Evaluation of Dynamic Con- trast Enhanced MRI: Application in Breast Cancer Diagnosis. Technology in Cancer Research & Treatment, 13(5), 445-454.Search in Google Scholar

Gastinel, L. N. (2012). Principal Component Analysis in the Era of “Omisc” Data. In P. Sanguansat (Ed.), Principal Component Analysis - Multidisciplinary Applications (pp. 21-42). InTech. DOI:10.5772/37099.10.5772/37099Search in Google Scholar

Giuliani, A., & Benigni, R. (2000). Principal Component Analysis for Descriptive Epidemiology. In R. W. Brause & E. Hanisch (Eds.). Medical Data Analysis. Lecture Notes in Computer Science, 1933, 308-313.10.1007/3-540-39949-6_37Search in Google Scholar

Hladnik, A. (2013). Image compression and face recognition: two image process- ing applications of principal component analysis. International Circular of Graphic Education and Research, 6, 56-61.Search in Google Scholar

Hoffmann, K., Schulze, M. B., Schienkiewitz, A., Nothlings, U., & Boeing, H. (2004). Application of a New Statistical Method to Derive Dietary Patterns in Nutritional Epidemiology. American Journal of Epidemiology, 159(10), 935-944.10.1093/aje/kwh134Search in Google Scholar

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417-441.10.1037/h0071325Search in Google Scholar

Kaur, G., Arora, A. S., & Jain, V. K. (2012). Multiple Linear Regression Model based on Principal Component Scores to Study the Relationship between Anthropometric Variables and BP Reactivity to Unsupported Back in Nor- motensive Post-graduate Females. International conference: 1st, Energy and environment technologies and equipment. Advances in Environment, Biotechnology and Biomedicine (pp. 373-377). Greece: WSEAS.Search in Google Scholar

Kolasa-Więcek, A. (2012). Application of PCA in the analysis of parameters related to agricultural greenhouse gases emissions in Europe. Journal of Research and Applications in Agricultural Engineering, 57(1), 77-79.Search in Google Scholar

Konieczna, L., & Lamparczyk, H. (2008). Wpływ płci na farmakokinetykę wybra- nych lekow. Zastosowania metod statystycznych w badaniach naukowych III (pp. 299-310).Krakow, Polska: StatSoft Polska. Retreived from: http://www.statsoft.pl/portals/0/Downloads/Wplywplci.pdf. Search in Google Scholar

Koter, S., & Wesołowska, K. (2003). Zastosowanie metody PCA do opisu wod na- turalnych. II Ogólnopolska Konferencja Naukowo-Techniczna “Aktualne za- gadnienia w uzdatnianiu i dystrybucji wody” (pp. 413-420). Szczyrk, Poland.Search in Google Scholar

Latifoglu, F., Polat, K., Kara, S., & Gunes, S. (2008). Medical diagnosis of atherosclerosis from Carotid Artery Doppler Signals sing principal compo- nent analysis (PCA), k-NN based weighting pre-processing and Artificial Immune Recognition System (AIRS). Journal of Biomedical Informatics, 41(1), 15-23.10.1016/j.jbi.2007.04.001Search in Google Scholar

Ma, S. (2007). Principal Component Analysis in Linear Regression Survival Model with Microarray Data. Journal of Data Science, 5, 183-198.10.6339/JDS.2007.05(2).326Search in Google Scholar

Martens, H., & Nas, T. (1991). Multivariate calibration. Chichester: Jon Wiley & Sons.Search in Google Scholar

Martis, R. J., Acharya U. R., & Min, L. Ch. (2013). ECG beat classification us- ing PCA, LDA, ICA and Discrete Wavelet Transform. Biomedical Signal Processing and Control, 8(5), 437-448.10.1016/j.bspc.2013.01.005Search in Google Scholar

Milewska, A. J., Gorska, U., Jankowska, D., Milewski, R., & Wołczyński, S. (2011). The use of the basket analysis in a research of the process of hospitalization in the gynecological ward. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 25(38), 83-98.Search in Google Scholar

Milewska, A. J., Jankowska, D., Cwalina, U., Więsak, T., Morgan, A., & Milew- ski, R. (2013). Analyzing outcome of intrauterine insemination treatment by application of Cluster Analysis or Kohonen Neural Networks. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 35(48), 7-25.10.2478/slgr-2013-0041Search in Google Scholar

Milewska, A. J., Jankowska, D., Gorska, U., Milewski, R., & Wołczyński, S. (2012). Graphical representation of the relationships between qualitative variables concerning the process of hospitalization in the gynecological ward using correspondence analysis. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 29(42), 7-25.Search in Google Scholar

Milewski, R., Jamiołkowski, J., Milewska, A. J., Domitrz, J., Szamatowicz, J., & Wołczyński, S. (2009). Prognosis of the IVF ICSI/ET procedure efficiency with the use of artificial neural networks among patients of the Depart- ment of Reproduction and Gynecological Endocrinology. Ginekologia Polska, 80(12), 900-906.Search in Google Scholar

Milewski, R., Malinowski, P., Milewska, A. J., Czerniecki, J., Ziniewicz, P., & Wołczyński, S. (2011). Nearest neighbor concept in the study of IVF ICSI/ET treatment effectiveness. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 25(38), 49-57.Search in Google Scholar

Milewski, R., Milewska, A. J., Czerniecki, J., Leśniewska, M., & Wołczyński, S. (2013a). Analysis of the demographic profile of patients treated for infertility using assisted reproductive +techniques in 2005-2010. Ginekologia Polska, 84(7), 609-614. 21 Milewski, R., Milewska, A. J., Domitrz, J., & Wołczyński, S. (2008). In vitro fer- tilization ICSI/ET in women over 40. Przegląd Menopauzalny, 7(2), 85-90.Search in Google Scholar

Milewski, R., Milewska, A. J., Więsak, T., Morgan, A., (2013b). Comparison of artificial neural networks and logistic regression analysis in pregnancy pre- diction using in the in vitro fertilization treatment Networks. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 35(48), 39-48.10.2478/slgr-2013-0033Search in Google Scholar

Mudrova, A., & Prochazka, A. (2005). Principal Component Analysis in Image Processing. Technical Computing Conference, Prague, Czech Republic.Search in Google Scholar

Næs, T., Isaksson, T., Fearn, T., & Davies, T. (2002). A user-friendly guide to multivariate calibration and classification. Chichester UK: NIR Publications.Search in Google Scholar

Nascimento, E. C. M., & Martins, J. B. L. (2012). Pharmacophoric Profile: De- sign of New Potential Drugs with PCA Analysis. In P. Sanguansat (Ed.), Principal Component Analysis - Multidisciplinary Applications (pp. 59-74). InTech. DOI:10.5772/37426.10.5772/37426Search in Google Scholar

Nowicki, J., Żylińska, A., & Kin, A. (2013). Zastosowanie metod statystycznych i graficznych w analizie zdeformowanych tektonicznie trylobitow z rodziny Ellipsocephalidae Matthew, 1887 z kambru Gor Świętokrzyskich. In M. Kę- dzierski & B. Kołodziej (Eds.), XXII Konferencja Naukowa Sekcji Paleonto- logicznej Polskiego Towarzystwa Geologicznego “Aktualizm i antyaktualizm w paleontologii” (pp. 38-39). Tyniec, Poland: Polskie Towarzystwo Geolog- iczne.Search in Google Scholar

Pandey, P. K., Singh, Y., & Tripathi, S. (2011). Image Processing using Princi- ple Component Analysis. International Journal of Computer Applications, 15(4), 37-40.10.5120/1935-2582Search in Google Scholar

Panek, D. (2014). Ocena parametrow analizy akustycznej w detekcji patologii mowy. Przegląd Elektrotechniczny, R. 90(5), 126-129. DOI: 10.12915/pe. 2014.05.29.Search in Google Scholar

Patterson, N., Price, A. L., & Reich, D. (2006). Population Structure and Eigen- analysis. PLoS Genetics, 2(12), 2074-2093. DOI:10.1371/journal.pgen.0020 190.Search in Google Scholar

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2, 559-572.10.1080/14786440109462720Search in Google Scholar

Petrisor, A. I., Ianos, I., Iurea, D., & Vaidianu, M. N. (2012). Applications of Principal Component Analysis integrated with GIS. Procedia Environmental Sciences, 14, 247-256.10.1016/j.proenv.2012.03.024Search in Google Scholar

Pushpa Rathi, G. V. P., & Palani, S. (2012). Brain Tumor MRI Image Classification with Feature Selection and Extraction using Linear Discriminant Analysis. International Journal of Information Sciences & Techniques, 2(4), 131-146.10.5121/ijist.2012.2413Search in Google Scholar

Raskin, R., & Terry, H. (1988). A Principal-Components Analysis of the Narcis- sistic Personality Inventory and Further Evidence of Its Construct Validity. Journal of Personality and Social Psychology, 54(5), 890-902.10.1037/0022-3514.54.5.890Search in Google Scholar

Raychaudhuri, S., Stuart, J. M., & Altman, R. (2000). Principal Component Analy- sis to Summarize Microarray Experiments: Application to Sporulation Time Series. Pacyfic Symposium on Biocomputing, 2000, 455-466.Search in Google Scholar

Reverter, F., Vegas, E., & Oller, J. M. (2012). Kernel Methods for Dimensionality Reduction Applied to the “Omics” Data. In P. Sanguansat (Ed.), Principal Component Analysis - Multidisciplinary Applications (pp. 1-20). InTech. DOI:10.5772/37431.10.5772/37431Search in Google Scholar

Rymuza, K., & Radzka, E. (2013). Zastosowanie analiz wielowymiarowych do oceny jakości wody pitnej. Nauka. Technologia. Jakość, 6(91), 165-174.Search in Google Scholar

Santo, R. do E. (2012). Principal Component Analysis applied to digital image compression. Einstein (Sao Paulo), 10(2), 135-139.10.1590/S1679-45082012000200004Search in Google Scholar

Scholz, M., Schmidt, S., Loesgen, S., & Bickeb¨oller, H. (1999). Analysis of principal component based quantitative phenotypes for alcoholism. Genetic Epidemi- ology, 17(l), 313-318.10.1002/gepi.1370170753Search in Google Scholar

Stuhler, E., &Merhof, D. (2012). Principal Component Analysis Applied to SPECT and PET Data of Dementia Patients - A Review. In P. Sanguansat (Ed.), Principal Component Analysis - Multidisciplinary Applications (pp. 167-186). InTech. DOI:10.5772/38010.10.5772/38010Search in Google Scholar

Suchacz, B., & Wesołowski, M. (2010). Relacje pomiędzy zawartością cynku, miedzi, ołowiu i niklu w wodnych ekstraktach z mieszanek ziołowych. Bro- matologia i Chemia Toksykologiczna, 43(4), 485-492.Search in Google Scholar

Szefer, P. (2003). Zastosowanie technik chemometrycznych w analitycznej ocenie probek biologicznych i środowiskowych. In J. Namieśnik, W. Chrzanowski & P. Szpinek (Eds.), Nowe Horyzonty i Wyzwania w Analityce i Monitoringu Środowiskowym (pp. 599-629). Gdańsk, Poland: CEEAM.Search in Google Scholar

Tabachnick, B. G., & Fidell, L. S. (1996). Using Multivariate Statistics. Boston: Pearson.Search in Google Scholar

Ukalska, J., Ukalski, K., Śmiałowski, T., & Mądry, W. (2008). Badanie zmien- ności i wspołzależności cech użytkowych w kolekcji roboczej pszenicy ozi- mej (Triticum aestivum L.) za pomocą metod wielowymiarowych. Część II. Analiza składowych głownych na podstawie macierzy korelacji fenotypowych i genotypowych. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, 249, 45-57.Search in Google Scholar

Webb, A. R. (2003). Statistical Pattern Recognition. Wiley.Search in Google Scholar

Varraso, R., Garcia-Aymerich, J., Monier, F., Le Moual, N., De Batlle, J., Mi- randa, G., Pison, Ch., Romieu, I., Kauffmann, F., & Maccario, J. (2012). Assessment of dietary patterns in nutritional epidemiology: principal com- ponent analysis compared with confirmatory factor analysis. The American Journal of Clinical Nutrition, 96(5), 1079-1092.10.3945/ajcn.112.038109Search in Google Scholar

Zuendorf, G., Kerrouche, N., Herholz, K., & Baron, J. C. (2003). Efficient principal component analysis for multivariate 3D voxel-based mapping of brain func- tional imaging data sets as applied to FDG-PET and normal aging. Human Brain Mapping 18(1), 13-21.10.1002/hbm.10069Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo