1. bookVolume 223 (2020): Issue 4 (December 2020)
Journal Details
License
Format
Journal
eISSN
2720-4286
First Published
30 Mar 2016
Publication timeframe
1 time per year
Languages
English
access type Open Access

Tracking of Unmanned Aerial Vehicles Using Computer Vision Methods: A Comparative Analysis

Published Online: 31 Dec 2020
Volume & Issue: Volume 223 (2020) - Issue 4 (December 2020)
Page range: 39 - 51
Journal Details
License
Format
Journal
eISSN
2720-4286
First Published
30 Mar 2016
Publication timeframe
1 time per year
Languages
English
Abstract

Tracking of small objects in any given airspace is an integral part of modern security systems. In these systems, there are embedded methods that employ the techniques based on either radio waves, or acoustic signals, or light radiation. The computer vision operation, springing from the light radiation-based technique, has prompted interest in its research. This operation has the advantage of being less expensive than radars and acoustic systems. In addition, it can solve complex security problems by detecting and tracking humans, vehicles, and flying objects. Therefore, this article evaluates the usefulness of the varying computer vision algorithms for tracking of small flying objects.

Keywords

[1] Wąż, M.; Naus, K. Wizualizacja wielowymiarowego obrazu radarowego. Zesz. Nauk. Akad. Mar. Wojennej 2013, 195, 99–116, doi:10.5604/0860889X.1097972.10.5604/0860889X.1097972Search in Google Scholar

[2] Blok, M.; Kaczmarek, S.; Młynarczuk, M. Radar Data Fusion in the Stradar System. Sci. J. Polish Nav. Acad. 2019, 218, 43–56, doi:10.2478/sjpna-2019-0017.10.2478/sjpna-2019-0017Search in Google Scholar

[3] Yoon, J. H.; Xu, H.; Garcia Carrillo, L. R. Advanced Doppler radar physiological sensing technique for drone detection. In; Ranney, K. I., Doerry, A., Eds.; 2017; pp. 10–21.10.1117/12.2262758Search in Google Scholar

[4] Piskur, P.; Szymak, P. Algorithms for passive detection of moving vessels in marine environment. J. Mar. Eng. Technol. 2018, 16, 377–385, doi:10.1080/20464177.2017.1398483.10.1080/20464177.2017.1398483Search in Google Scholar

[5] Sutin, A.; Salloum, H.; Sedunov, A.; Sedunov, N. Acoustic detection, tracking and classification of Low Flying Aircraft. In 2013 IEEE International Conference on Technologies for Homeland Security (HST); IEEE, 2013; pp. 141–146.10.1109/THS.2013.6698990Search in Google Scholar

[6] Dumitrescu, C.; Minea, M.; Costea, I. M.; Cosmin Chiva, I.; Semenescu, A. Development of an Acoustic System for UAV Detection. Sensors 2020, 20, 4870, doi:10.3390/s20174870.10.3390/s20174870Search in Google Scholar

[7] Hożyń, S.; Zalewski, J. Shoreline Detection and Land Segmentation for Autonomous Surface Vehicle Navigation with the Use of an Optical System. Sensors 2020, 20, 2799, doi:10.3390/s20102799.10.3390/s20102799Search in Google Scholar

[8] Praczyk, T.; Hożyń, S.; Bodnar, T.; Pietrukaniec, L.; Błaszczyk, M.; Zabłotny, M. Concept and first results of optical navigational system. Trans. Marit. Sci. 2019, 8, 46–53, doi:10.7225/toms.v08.n01.005.10.7225/toms.v08.n01.005Search in Google Scholar

[9] Hożyń, S.; Żak, B. Local image features matching for real-time seabed tracking applications. J. Mar. Eng. Technol. 2017, doi:10.1080/20464177.2017.1386266.10.1080/20464177.2017.1386266Search in Google Scholar

[10] Maan, S.; Tyagi, A.; Kumar, S.; Kumar, A. Security and Surveillance using Computer Vision. Int. J. Comput. Appl. 2020, 176, 30–35, doi:10.5120/ijca2020920280.10.5120/ijca2020920280Search in Google Scholar

[11] Hożyń, S.; Żak, B. Moving Object Detection, Localization and Tracking Using Stereo Vison System. Solid State Phenom. 2015, 236, 134–141, doi:10.4028/www.scientific.net/SSP.236.134.10.4028/www.scientific.net/SSP.236.134Search in Google Scholar

[12] Gautam, K. S.; Parameswaran, L.; Thangavel, S. K. Computer Vision Based Asset Surveillance for Smart Buildings. J. Comput. Theor. Nanosci. 2020, 17, 456–463, doi:10.1166/jctn.2020.8691.10.1166/jctn.2020.8691Search in Google Scholar

[13] Hożyń, S.; Przybysz, M. Detection of Unmanned Aerial Vehicles Using Computer Vision Methods: A Comparative Analysis. Sci. J. Polish Nav. Acad. 2020, 220221, 5–13, doi:10.2478/sjpna-2020-0001.10.2478/sjpna-2020-0001Search in Google Scholar

[14] Lukežič, A.; Vojíř, T.; Čehovin Zajc, L.; Matas, J.; Kristan, M. Discriminative Correlation Filter Tracker with Channel and Spatial Reliability. Int. J. Comput. Vis. 2018, 126, 671–688, doi:10.1007/s11263-017-1061-3.10.1007/s11263-017-1061-3Search in Google Scholar

[15] Babenko, B.; Ming-Hsuan Yang; Belongie, S. Robust Object Tracking with Online Multiple Instance Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 1619–1632, doi:10.1109/TPAMI.2010.226.10.1109/TPAMI.2010.226Search in Google Scholar

[16] Bolme, D.; Beveridge, J. R.; Draper, B. A.; Lui, Y. M. Visual object tracking using adaptive correlation filters. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition; IEEE, 2010; pp. 2544–2550.10.1109/CVPR.2010.5539960Search in Google Scholar

[17] Henriques, J. F.; Caseiro, R.; Martins, P.; Batista, J. High-speed tracking with kernelised correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 583–596, doi:10.1109/TPAMI.2014.2345390.10.1109/TPAMI.2014.2345390Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo