Cite

1. Gaddi AV, Galuppo P, Yang J. Creatine Phosphate Administration in Cell Energy Impairment Conditions: A Summary of Past and Present Research. Heart Lung Circ. 2017; 26(10):1026-35.10.1016/j.hlc.2016.12.020 Search in Google Scholar

2. Weiss R, Gerstenblith G, Bottomley P. ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc Natl Acad Sci U S A. 2005; 102(3):808-13.10.1073/pnas.0408962102 Search in Google Scholar

3. Pascual F, Coleman R. Fuel Availability and Fate in Cardiac Metabolism: A Tale of Two Substrates. Biochim Biophys Acta. 2016; 1861(10):1425-33.10.1016/j.bbalip.2016.03.014 Search in Google Scholar

4. Goldberg IJ, Trent CM, Schulze PC. Lipid metabolism and toxicity in the heart. Cell Metab. 2012; 15(6):805-12.10.1016/j.cmet.2012.04.006 Search in Google Scholar

5. Lopez R, Marzban B, Gao X, Lauinger E, Van den Bergh F, Whitesall SE, Converso-Baran K, Burant CF, Michele DE, Beard DA. Impaired Myocardial Energetics Causes Mechanical Dysfunction in Decompensated Failing Hearts. Function (Oxf). 2020;1(2):zqaa018. doi: 10.1093/function/zqaa018. Epub 2020 Sep 22. Open DOISearch in Google Scholar

6. Cao F, Zervou S, Lygate C. Тhе creatine kinase system as a therapeutic target for myocardial ischaemia–reperfusion injury. Biochem Soc Trans. 2018; 46(5):1119-27.10.1042/BST20170504 Search in Google Scholar

7. Zhang W, Zhang H, Xing Y. Protective Effects of Phosphocreatine Administered Post-Treatment Combined With Ischemic Post-Conditioning on Rat Hearts With Myocardial Ischemia/Reperfusion Injury. J Clin Med Res. 2015; 7(4):242-7.10.14740/jocmr2087w Search in Google Scholar

8. Vinten-Johansen J, Shi W. Perconditioning and postconditioning: current knowledge, knowledge gaps, barriers to adoption, and future directions. J Cardiovasc Pharmacol Ther. 2011 Sep-Dec;16(3-4):260-6.10.1177/1074248411415270 Search in Google Scholar

9. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979; 95(2):351-58.10.1016/0003-2697(79)90738-3 Search in Google Scholar

10. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982; 126(1):131-8.10.1016/0003-2697(82)90118-X Search in Google Scholar

11. Auclair C, Voisin E (1985). Nitroblue tetrazolium reduction. In: Greenvvald RA (ed) Handbook of methods for oxygen radical research. CRC Press Une, Boca Raton, pp 123-132. Search in Google Scholar

12. Pick E, Keisari Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods. 1980; 38(1-2): 161-70.10.1016/0022-1759(80)90340-3 Search in Google Scholar

13. Klabunde, Richard E. Cardiovascular Physiology Concepts. Philadelphia, PA: Lippincott Williams & Wilkins/Wolters Kluwer, 2012. Search in Google Scholar

14. González-Montero J, Brito R, Gajardo AIJ, Rodrigo R. Myocardial reperfusion injury and oxidative stress: Therapeutic opportunities. World J Cardiol. 2018; 10(9): 74–86.10.4330/wjc.v10.i9.74618906930344955 Search in Google Scholar

15. Kryzhanovskii SA, Kandelaki IN, Sharov VG, Kaverina NV, Sakset VA. Effect of exogenous phosphocreatine on the size of experimental myocardial infarction. Kardiologiia. 1988; 28:88–91. Search in Google Scholar

16. Prabhakar G, Vona-Davis L, Murray D, Lakhani P, Murray G. Phosphocreatine Restores High-Energy Phosphates in Ischemic Myocardium: Implication for Off-Pump Cardiac Revascularization. J Am Coll Surg. 2003; 197(5):786-91.10.1016/j.jamcollsurg.2003.05.00114585415 Search in Google Scholar

17. Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardialinjury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003; 285(2):H579-H588.10.1152/ajpheart.01064.200212860564 Search in Google Scholar

18. Granfeldt А, Lefer D, Vinten-Johansen J. Protective Ischaemia in Patients: Preconditioning and Postconditioning. Cardiovasc Res. 2009; 83(2):234-46.10.1093/cvr/cvp129270172119398470 Search in Google Scholar

19. Vander Heide RS, Steenbergen C. Cardioprotection and myocardial reperfusion: pitfalls to clinical application. Circ Res. 2013; 113(4):464-77.10.1161/CIRCRESAHA.113.300765382425223908333 Search in Google Scholar

20. Yeh RW, Sidney S, Chandra M, Sorel M, Selby JV, Go AS. Population trends in the incidence and outcomes of acute myocardial infarction. N Engl J Med. 2010; 362(23):2155-65.10.1056/NEJMoa090861020558366 Search in Google Scholar

21. Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev. 2008; 88(2):581-609.10.1152/physrev.00024.2007319957118391174 Search in Google Scholar

22. Stephanou A, Brar B, Liao Z, Scarabelli T, Knight RA, Latchman DS. Distinct initiator caspases are required for the induction of apoptosis in cardiac myocytes during ischaemia versus reperfusion injury. Cell Death Differ. 2001; 8(4):434-5.10.1038/sj.cdd.440084611550095 Search in Google Scholar

23. Spindler M, Meyer K, Stromer H, Leupold A, Boehm E, Wagner H, et al. (2004) Creatine kinase-deficient hearts exhibit increased susceptibility to ischemia-reperfusion injury and impaired calcium homeostasis. Am J Physiol Heart Circ Physiol 287: H1039–1045.10.1152/ajpheart.01016.200315105171 Search in Google Scholar

24. Tokarska-Schlattner M, Epand RF, Meiler F, Zandomeneghi G, Neumann D, Widmer HR, et al. Phosphocreatine interacts with phospholipids, affects membrane properties and exerts membrane-protective effects. PLoS One. 2012; 7(8):e43178.10.1371/journal.pone.0043178 Search in Google Scholar

25. Bolli R, Becker L, Gross G, Mentzer R Jr, Balshaw D, Lathrop DA. Myocardial protection at acrossroads: the need for translation into clinical therapy. Circ Res. 2004; 95:125–134.10.1161/01.RES.0000137171.97172.d7 Search in Google Scholar

26. Zuo L, Zhou T, Pannell BK, Ziegler AC, Best TM. Biological and physiological role of reactive oxygen species—The good, the bad and the ugly. Acta Physiol. 2015; 214:329–348.10.1111/apha.12515 Search in Google Scholar

27. Tann AW, Boldogh I, Meiss G, Qian W, van Houten B, Mitra S, et al. Apoptosis induced by persistent singlestrand breaks in mitochondrial genome: Critical role of EXOG (5′-EXO/endonuclease) in their repair. J. Biol. Chem. 2011; 286:31975–31983. Search in Google Scholar

28. Fleury C, Mignotte B, Vayssiere JL. Mitochondrial reactive oxygen species in cell death signaling. Biochimie. 2002; 84:131–141.10.1016/S0300-9084(02)01369-X Search in Google Scholar

29. Lesnefsky EJ, Chen Q, Tandler B, Hoppel CL. Mitochondrial Dysfunction and Myocardial Ischemia-Reperfusion: Implications for Novel Therapies. Annu Rev Pharmacol Toxicol. 2017; 57: 535-565.10.1146/annurev-pharmtox-010715-103335 Search in Google Scholar

30. Brandes RP, Kreuzer J. Vascular NADPH oxidases: molecular mechanisms of activation. Cardiovasc Res. 2005; 65(1):16-27.10.1016/j.cardiores.2004.08.007 Search in Google Scholar

31. Fernandez J, Perez-Alvarez JA, Fernandez-Lopez JA. Thiobarbituric acid test for monitoring lipid oxidation in meat. Food Chemistry. 1997;59(3):345-353.10.1016/S0308-8146(96)00114-8 Search in Google Scholar

32. Cunha MP, Martín-de-Saavedra MD, Romero A, Egea J, Ludka FK, Tasca CI, et al. Both creatine and its product phosphocreatine reduce oxidative stress and afford neuroprotection in an in vitro Parkinson’s model. ASN Neuro. 2014; 6(6):1759091414554945.10.1177/1759091414554945435760825424428 Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other