Open Access

The Effects of Creatine and Related Compounds on Cardiovascular System: From Basic to Applied Studies


Cite

1. Kalhan SC, Gruca L, Marczewski S, Bennett C. Whole body creatine and protein kinetics in healthy men and women: effects of creatine and amino acid supplementation. Amino acids 2015; 1–11.10.1007/s00726-015-2111-1475415126480831Search in Google Scholar

2. Santacruz L, Arciniegas AJL, Darrabie M, Mantilla JG, Baron RM, Bowles DE, et al. Hypoxia decreases creatine uptake in cardiomyocytes, while creatine supplementation enhances HIF activation. Physiol Rep 2017; 5(16). pii: e13382.10.14814/phy2.13382558226628821596Search in Google Scholar

3. Lygate CA., Bohl S, ten Hove M, Faller KM, Ostrowski PJ, Zervou S, et al. Moderate elevation of intracellular creatine by targeting the creatine transporter protects mice from acute myocardial infarction. Cardiovasc. Res 2012; 96: 466–75.Search in Google Scholar

4. Maresh CM, Farrell MJ, Kraemer WJ, Yamamoto LM, Lee EC, Armstrong LE, et al. The effects of betaine supplementation on strength and power performance. Med Sci Sports Exerc 2008; 39:S101.10.1249/01.mss.0000273316.29685.f6Search in Google Scholar

5. del Favero S, Roschel H, Artioli G, Ugrinowitsch C, Tricoli V, Costa A, et al. Creatine but not betaine supplementation increases muscle phosphorylcreatine content and strength performance. Amino Acids 2012; 42(6): 2299-305.10.1007/s00726-011-0972-521744011Search in Google Scholar

6. Speer O, Neukomm LJ, Murphy RM, Zanolla E, Schlattner U, Henry H, et al. Creatine transporters: a reappraisal. Mol. Cell. Biochem 2004; 256-257(1-2): 407–24.10.1023/B:MCBI.0000009886.98508.e7Search in Google Scholar

7. Lygate CA., Bohl S, ten Hove M, Faller KM, Ostrowski PJ, Zervou S, et al. Moderate elevation of intracellular creatine by targeting the creatine transporter protects mice from acute myocardial infarction. Cardiovasc. Res 2012; 96: 466–75.Search in Google Scholar

8. Skelton MR, Schaefer TL, Graham DL, Degrauw TJ, Clark JF, Williams MT, et al. Creatine Transporter (CrT; Slc6a8) Knockout Mice as a Model of Human CrT Deficiency. PLoS One 2011; 6(1):e16187.10.1371/journal.pone.0016187302096821249153Search in Google Scholar

9. Cullen ME, Yuen AH, Felkin LE, Smolenski RT, Hall JL, Grindle S, et al. Myocardial expression of the argi-nine:glycine amidinotransferase gene is elevated in heart failure and normalized after recovery: potential implications for local creatine synthesis. Circulation 2006; 114(1) Suppl.:I16–I20.10.1161/CIRCULATIONAHA.105.00044816820567Search in Google Scholar

10. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16: 31–41.10.1159/0001805801244564Search in Google Scholar

11. Delanghe J, de Slypere J, de Buyzere M, Robbrecht J, Wieme R, Vermeulen A. Normal reference values for creatine, creatinine, and carnitine are lower in vegetarians. Clin Chem 1989; 35: 1802–3.10.1093/clinchem/35.8.1802Search in Google Scholar

12. Brosnan J, Brosnan M. Creatine: endogenous metabolite, dietary, and therapeutic supplement. Annu Rev Nutr 2007; 27: 241–61.10.1146/annurev.nutr.27.061406.09362117430086Search in Google Scholar

13. Joncquel-Chevalier Curt M, Voicu PM, Fontaine M, Dessein AF, Porchet N, Mention-Mulliez K, et al. Creatine biosynthesis and transport in health and disease. Biochimie 2015; 119: 146-65.10.1016/j.biochi.2015.10.02226542286Search in Google Scholar

14. Butts J, Jacobs B, Silvis M. Creatine Use in Sports. Sports Health 2018; 10(1): 31-4.10.1177/1941738117737248575396829059531Search in Google Scholar

15. Zervou S, Whittington HJ, Russell JA, Lygate CA. Augmentation of Creatine in the Heart Mini Rev Med Chem. 2016; 16(1): 19–28.Search in Google Scholar

16. Wyss M., Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev 2000; 80(3): 1107–213.10.1152/physrev.2000.80.3.110710893433Search in Google Scholar

17. Brosnan J.T., da Silva R.P., Brosnan M.E. The metabolic burden of creatine synthesis. Amino Acids 2011; 40(5): 1325–31.10.1007/s00726-011-0853-y21387089Search in Google Scholar

18. Kalhan SC, Gruca L, Marczewski S, Bennett C. Whole body creatine and protein kinetics in healthy men and women: effects of creatine and amino acid supplementation. Amino acids 2015; 1–11.10.1007/s00726-015-2111-1475415126480831Search in Google Scholar

19. Poortmans, JR, Rawson ES, Burke LM, Stear SJ. et al.AZ of nutritional supplements:dietary supplements, sports nutrition foods and ergogenic aids for health and performance Part 11. Br. J. Sports Med 2010; 44: 765–6.Search in Google Scholar

20. Fukada S, Setoue M, Morita T. et al. Dietary eritadenine suppresses guanidinoacetic acid-induced hyperhomocysteinemia in rats. J Nutr 2006; 136: 2797–802.10.1093/jn/136.11.279717056803Search in Google Scholar

21. Andres S, Ziegenhagen R, Trefflich I, Pevny S, Schultrich K, Braun H, et al. Creatine and creatine forms intended for sports nutrition. Mol Nutr & Food Res. 2017; 61(6): 1600772.10.1002/mnfr.20160077228019093Search in Google Scholar

22. Gualano B, Roschel H, Lancha AH Jr, Brightbill CE, Rawson ES. In sickness and in health: the widespread application of creatine supplementation. Amino Acids 2012; 43(2): 519-29.10.1007/s00726-011-1132-722101980Search in Google Scholar

23. Gualano B, Rawson ES, Candow DG, Chilibeck PD. Creatine supplementation in the aging population: effects on skeletal muscle, bone and brain. Amino Acids 2016; 48(8): 1793–805.10.1007/s00726-016-2239-727108136Search in Google Scholar

24. Neves M Jr, Gualano B, Roschel H, Fuller R, Benatti FB, Pinto AL, et al. Beneficial effect of creatine supplementation in knee osteoarthritis. Med Sci Sports Exerc 2011; 43: 1538–43.10.1249/MSS.0b013e318211859221311365Search in Google Scholar

25. Wilkinson TJ, Lemmey AB, Jones JG, Sheikh F, Ahmad YA, Chitale S, et al. Can creatine supplementation improve body composition and objective physical function in rheumatoid arthritis patients? A randomised controlled trial. Arthritis Care Res (Hoboken) 2016; 68(6): 729-37.10.1002/acr.2274726414681Search in Google Scholar

26. Collins J, Longhurst G, Roschel H, Gualano B. Resistance Training and Co-supplementation with Creatine and Protein in Older Subjects with Frailty. J Frailty Aging 2016; 5(2): 126-34.10.14283/jfa.2016.8527224505Search in Google Scholar

27. Gualano B, Macedo AR, Alves CR, Roschel H, Benatti FB, Takayama L, et al. Creatine supplementation and resistance training in vulnerable older women: a randomized double-blind placebo-controlled clinical trial. Exp Gerontol 2014; 53:7-15.10.1016/j.exger.2014.02.00324530883Search in Google Scholar

28. Chilibeck PD, Candow DG, Landeryou T, Kaviani M, Paus-Jenssen L. Effects of creatine and resistance training on bone health in postmenopausal women. Med Sci Sports Exerc 2015; 47(8): 1587–95.10.1249/MSS.000000000000057125386713Search in Google Scholar

29. Chrusch MJ, Chilibeck PD, Chad KE, Davison KS, Burke DG. Creatine supplementation combined with resistance training in older men. Med Sci Sports Exerc 2001; 33(12): 2111–7.10.1097/00005768-200112000-0002111740307Search in Google Scholar

30. Andres RH, Ducray AD, Schlattner U, Wallimann T, Widmer HR. Functions and effects of creatine in the central nervous system. Brain Res Bull 2008; 76(4): 329–43.10.1016/j.brainresbull.2008.02.03518502307Search in Google Scholar

31. Amital D, Vishne T, Roitman S, Kotler M, Levine J. Open study of creatine monohydrate in treatment-resistant posttraumatic stress disorder. J Clin Psychiatry 2006; 67(5): 836–7.10.4088/JCP.v67n0521cSearch in Google Scholar

32. Amital D, Vishne T, Rubinow A, Levine J. Observed effects of creatine monohydrate in a patient with depression and fibromyalgia. Am J Psychiatry 2006; 163(10): 1840–1.10.1176/ajp.2006.163.10.1840b17012702Search in Google Scholar

33. Buford TW, Kreider RB, Stout JR, Greenwood M, et al., International Society of Sports Nutrition position stand: creatine supplementation and exercise. J Int Soc Sports Nutr 2007; 4: 1–8.10.1186/1550-2783-4-6204849617908288Search in Google Scholar

34. Harris RC, Soderlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond) 1992; 83(3): 367–74.10.1042/cs08303671327657Search in Google Scholar

35. Hultman E, Soderlund K, Timmons JA, Cederblad G, Greenhaff PL. Muscle creatine loading in men. J Appl Physiol 1996; 81(1): 232–7.10.1152/jappl.1996.81.1.2328828669Search in Google Scholar

36. EFSA, (European Food Safety Authority), Orotic acid salts as sources of orotic acid and various minerals added for nutritional purposes to food supplements, scientific opinion of the panel on food additives and nutrient sources added to food (ANS). EFSA J. 2009; 1187: 1–25.Search in Google Scholar

37. Velema, M. S., de Ronde, W., Elevated plasma creati-nine due to creatine ethyl ester use. Neth J Med 2011; 69: 79–81.Search in Google Scholar

38. EFSA, (European Food Safety Authority), Statement of EFSA: assessment of one published review on health risks associated with phosphate additives in food. EFSA J. 2013, 11, 3444.Search in Google Scholar

39. EFSA, (European Food Safety Authority), Tolerable upper intake levels for vitamins and minerals 2006.Search in Google Scholar

40. Edison EE, Brosnan ME, Meyer C, Brosnan JT. Creatine synthesis: production of guanidinoacetate by the rat and human kidney in vivo. Am J Physiol Renal Physiol 2007; 293: F1799–804.10.1152/ajprenal.00356.200717928413Search in Google Scholar

41. Walker JB. Creatine: biosynthesis, regulation, function. Adv Enzymol Relat Areas Mol Biol 1979; 50: 177–242.10.1002/9780470122952.ch4386719Search in Google Scholar

42. Ostojic SM, Vojvodic-Ostojic A. Single-dose oral guanidinoacetic acid exhibits dose-dependent pharmacokinetics in healthy volunteers. Nutrition Research 2015; 35(3): 198–205.10.1016/j.nutres.2014.12.01025622538Search in Google Scholar

43. Ostojic SM, Niess B, Stojanovic M, Obrenovic M. Creatine Metabolism and Safety Profiles after Six-Week Oral Guanidinoacetic Acid Administration in Healthy Humans. Int J Med Sci 2013; 10(2): 141–7.10.7150/ijms.5125354721123329885Search in Google Scholar

44. Ostojic SM, Niess B, Stojanovic M, Obrenovic M. Co-administration of methyl donors along with guanidinoacetic acid reduces the incidence of hyperhomocysteinaemia compared with guanidinoacetic acid administration alone. Br J Nutr 2013; 14; 110(5): 865-70.10.1017/S000711451200587923351309Search in Google Scholar

45. Ostojic SM, Stojanovic MD, Hoffman JR. Six-Week Oral Guanidinoacetic Acid Administration Improves Muscular Performance in Healthy Volunteers. J Investig Med 2015; 63(8): 942-6.10.1097/JIM.000000000000021226079223Search in Google Scholar

46. Ostojic SM, Vojvodic-Ostojic A. Single-dose oral guanidinoacetic acid exhibits dose-dependent pharmacokinetics in healthy volunteers. Nutr Res, 2015; 35(3): 198–205.10.1016/j.nutres.2014.12.010Search in Google Scholar

47. Michiels J, Maertens L, Buyse J. et al. Supplementation of guanidinoacetic acid to broiler diets: effects on performance, carcass characteristics, meat quality, and energy metabolism. Poult Sci 2012; 91: 402–12.10.3382/ps.2011-0158522252354Search in Google Scholar

48. Borsook ME, Borsook H. Treatment of cardiac decompensation with betaine and glycocyamine. Ann West Med Surg 1951; 5: 830–55.Search in Google Scholar

49. Graybiel A, Patterson CA. Use of betaine and glycocya-mine in the treatment of patients with heart disease: preliminary report. Ann West Med Surg 1951; 5: 863–75.Search in Google Scholar

50. Stead LM, Au KP, Jacobs RL. et al. Methylation demand and homocysteine metabolism: effects of dietary provision of creatine and guanidinoacetate. Am J Physiol Endocrinol Metab 2001; 281: E1095–100.10.1152/ajpendo.2001.281.5.E109511595668Search in Google Scholar

51. Zugno AI, Stefanello FM, Scherer EB. et al. Guanidino-acetate decreases antioxidant defenses and total protein sulfhydryl content in striatum of rats. Neurochem Res 2008; 33: 1804–10.10.1007/s11064-008-9636-618343996Search in Google Scholar

52. Ostojic SM, Ostojic J, Drid P, Vranes M, Jovanov P. Dietary guanidinoacetic acid increases brain creatine levels in healthy men. Nutrition 2017; 33: 149-56.10.1016/j.nut.2016.06.00127497517Search in Google Scholar

53. Zeisel SH, Mar M-H, Howe JC, Holden JM. Concentrations of choline-containing compounds and betaine in common foods. J Nutr 2003; 133: 1302–7.10.1093/jn/133.5.130212730414Search in Google Scholar

54. Williams KT, Schalinske KL. New insights into the regulation of methyl group and homocysteine metabolism. J Nutr 2007; 137: 311–4.10.1093/jn/137.2.31117237303Search in Google Scholar

55. Cholewa JM, Guimarães-Ferreira L, Zanchi NE. Effects of betaine on performance and body composition: a review of recent findings and potential mechanisms. Amino Acids 2014; 46(8), 1785–93.10.1007/s00726-014-1748-524760587Search in Google Scholar

56. Lv S, Fan R, Du Y, Hou M, Tang Z, Ling W, et al. Betaine supplementation attenuates atherosclerotic lesion in apolipoprotein E-deficient mice. Eur J Nutr 2009; 48(4): 205-12.10.1007/s00394-009-0003-419255798Search in Google Scholar

57. Lee EC, Maresh CM, Kraemer WJ, Yamamoto LM, Hatfield DL, Bailey BL, et al. Ergogenic ef fects of betaine supplementation on strength and power performance. J Int Soc Sports Nutr 2010; 7:27.10.1186/1550-2783-7-27291595120642826Search in Google Scholar

58. Hoffman JR, Ratamess NA, Kang J, Rashti SL, Faigenbaum AD. Effect of betaine supplementation on power performance and fatigue. J Int Soc Sports Nutr 2009; 6:7.10.1186/1550-2783-6-7265184519250531Search in Google Scholar

59. Maresh CM, Farrell MJ, Kraemer WJ, Yamamoto LM, Lee EC, Armstrong LE, et al. The effects of betaine supplementation on strength and power performance. Med Sci Sports Exerc 2008; 39:S101.10.1249/01.mss.0000273316.29685.f6Search in Google Scholar

60. Ganesan B, Buddhan S, Anandan R, Sivakumar R, AnbinEzhilan R. Antioxidant defense of betaine against isoprenaline-induced myocardial infarction in rats. Mol Biol Rep 2010; 37(3): 1319-27.10.1007/s11033-009-9508-419288277Search in Google Scholar

61. Ganesan B, Anandan R. Protective effect of betaine on changes in the levels of lysosomal enzyme activities in heart tissue in isoprenaline-induced myocardial infarction in Wistar rats. Cell Stress Chaperones 2009; 14(6): 661-7.10.1007/s12192-009-0111-3286695319294532Search in Google Scholar

62. Ganesan B, Buddhan S, Jeyakumar R, Anandan R. Protective effect of betaine on changes in the levels of membrane-bound ATPase activity and mineral status in experimentally induced myocardial infarction in Wistar rats. Biol Trace Elem Res 2009; 131(3): 278-90.10.1007/s12011-009-8366-119352599Search in Google Scholar

63. Knight LS, Piibe Q, Lambie I, Perkins C, Yancey PH. Betaine in the Brain: Characterization of Betaine Up-take, its Influence on Other Osmolytes and its Potential Role in Neuroprotection from Osmotic Stress. Neurochem Res 2017; 42(12): 3490–503.10.1007/s11064-017-2397-328918494Search in Google Scholar

64. Zabrodina VV, Shreder OV, Shreder ED, Durnev AD. Effect of afobazole and betaine on cognitive disorders in the offspring of rats with streptozotocin-induced diabetes and their relationship with DNA damage. Bull Exp Biol Med 2016; 161: 359–66.10.1007/s10517-016-3414-227502535Search in Google Scholar

65. Chai GS, Jiang X, Ni ZF, Ma ZW, Xie AJ, Cheng XS, et al. Betaine attenuates Alzheimer-like pathological changes and memory deficits induced by homocysteine. J Neurochem 2013; 124: 388–96.10.1111/jnc.1209423157378Search in Google Scholar

66. Lever M, George PM, Elmslie JL, Atkinson W, Slow S, Molyneux SL,et al. Betaine and Secondary Events in an Acute Coronary Syndrome Cohort. PLoS One 2012; 7(5): e37883.10.1371/journal.pone.0037883335928522649561Search in Google Scholar

67. Iqbal O, Fareed D, Cunana J, Hoppensteadt D, Messadek J, Baltasar F, Fareed J. Betaine induced release of tissue factor pathway inhibitor and nitric oxide: implications in the management of cardiovascular disease. Presented at the 2006 meeting of Experimental Biology. 2006.10.1096/fasebj.20.4.A655-aSearch in Google Scholar

68. Bloomer RJ, Farney TM, Trepanowski JF, McCarthy CG, Canale RE. Effect of betaine supplementation on plasma nitrate/nitrite in exercise-trained men. J Int Soc Sports Nutr 2011; 8: 5.10.1186/1550-2783-8-5306611521414230Search in Google Scholar

69. Pryor JL, Wolf ST, Sforzo G, Swenesen T. The Effect of Betaine on Nitrate and Cardiovascular Response to Exercise. Int J Exerc Sci 2017; 10(4): 550–9.Search in Google Scholar

70. Aksentijević D, Zervou S, Faller KME, McAndrew DJ,Schneider JE, Neubauer S, et al. Myocardial Creatine Levels Do Not Influence Response to Acute Oxidative Stress in Isolated Perfused Heart. PLoS One 2014; 9(10): e109021.10.1371/journal.pone.0109021418280625272153Search in Google Scholar

71. Santacruz L, Darrabie MD, Mantilla JG, Mishra R, Feger BJ, Jacobs DO. Creatine supplementation reduces doxorubicin-induced cardiomyocellular injury. Cardiovasc Toxicol 2015; 15: 180–8.10.1007/s12012-014-9283-x25253560Search in Google Scholar

72. Lawler JM, Barnes WS, Wu G, Song W, Demaree S. Direct antioxidant properties of creatine. Biochem Biophys Res Commun 2002; 290: 47–52.10.1006/bbrc.2001.616411779131Search in Google Scholar

73. Kingsley MIC, Cunningham D, Mason L, Kilduff LP, McEneny J. Role of creatine supplementation on exercise-induced cardiovascular function and oxidative stress. Oxid Med Cell Longev 2009; 2(4): 247–54.10.4161/oxim.2.4.9415276326320716911Search in Google Scholar

74. Faller KME, Atzler D, McAndrew DJ, Zervou S, Whit-tington HJ, Simon JN, et al. Impaired cardiac contractile function in arginine:glycine amidinotransferase knockout mice devoid of creatine is rescued by homoarginine but not creatine. Cardiovasc Res 2018; 114(3): 417–30.10.1093/cvr/cvx242598271429236952Search in Google Scholar

75. Cornelissen VA, Defoor JG, Stevens A, Schepers D, Hespel P, Decramer M, et al. Effect of creatine supplementation as a potential adjuvant therapy to exercise training in cardiac patients: a randomized controlled trial. Clin Rehabil 2010; 24(11): 988-99.10.1177/026921551036799520576665Search in Google Scholar

76. Ostojic SM, Stojanovic MD, Olcina G. Oxidant-Antioxidant Capacity of Dietary Guanidinoacetic Acid. Ann Nutr Metab 2015; 67(4): 243–46.10.1159/00044119826485404Search in Google Scholar

77. Ostojic SM, Trivic T, Drid P, Stajer V, Vranes M. Effects of Guanidinoacetic Acid Loading on Biomarkers of Cardiometabolic Risk and Inflammation. Ann Nutr Metab 2017; 72(1): 18–20.10.1159/00048494529232678Search in Google Scholar

78. Schwahn BC, Wang XL, Mikael LG, Wu Q, Cohn J, Jiang H, et al. Betaine supplementation improves the atherogenic risk factor profile in a transgenic mouse model of hyperhomocysteinemia. Atherosclerosis 2007;195(2):e100-7.10.1016/j.atherosclerosis.2007.06.03017689540Search in Google Scholar

79. HR, Musani SK, Dibaba DT, Talegawkar SA, Taylor HA, Tucker KL, et al. Dietary choline and betaine; associations with subclinical markers of cardiovascular disease risk and incidence of CVD, coronary heart disease and stroke: the Jackson Heart Study. Eur J Nutr 2018; 57(1): 51-60.10.1007/s00394-016-1296-8593170527550622Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other