Cite

1. Bains, J.S., Cusulin, J.I.W., & Inoue, W. (2015). Stress-related synaptic plasticity in the hypothalamus. Nature Reviews Neuroscience, 16(7), 377-388. DOI:10.1038/nrn388110.1038/nrn388126087679Open DOISearch in Google Scholar

2. Everly Jr, G.S., & Lating, J.M. (2012). A clinical guide to the treatment of the human stress response (3rd ed.). Springer Science & Business Media. DOI:10.1007/978-1-4614-5538-710.1007/978-1-4614-5538-7Open DOISearch in Google Scholar

3. Carroll, D., Ginty, A.T., Whittaker, A.C., Lovallo, W.R., & de Rooij, S.R. (2017). The behavioural, cognitive, and neural corollaries of blunted cardiovascular and cortisol reactions to acute psychological stress. Neuroscience & Biobehavioral Reviews, 77, 74-86. DOI:10.1016/j.neubiorev.2017.02.02510.1016/j.neubiorev.2017.02.025674135028254428Open DOISearch in Google Scholar

4. Slavich, G.M., & Irwin, M.R. (2014). From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychological bulletin, 140(3), 774-815. DOI:10.1037/a003530210.1037/a0035302400629524417575Open DOISearch in Google Scholar

5. De Kloet, E.R., & Molendijk, M.L. (2016). Coping with the forced swim stressor: towards understanding an adaptive mechanism. Neural Plasticity. DOI:10.1155/2016/650316210.1155/2016/6503162480664627034848Open DOISearch in Google Scholar

6. Anderson, E.H., & Shivakumar, G. (2013). Effects of exercise and physical activity on anxiety. Frontiers in psychiatry, 4, 27. DOI:10.3389/fpsyt.2013.0002710.3389/fpsyt.2013.00027363280223630504Open DOISearch in Google Scholar

7. Valentino, R.J., & Van Bockstaele, E. (2015). Endogenous opioids: the downside of opposing stress. Neurobiology of stress, 1, 23-32. DOI:10.1016/j.ynstr.2014.09.00610.1016/j.ynstr.2014.09.006426040825506603Open DOISearch in Google Scholar

8. Le Merrer, J., Becker, J.A., Befort, K., & Kieffer, B.L. (2009). Reward processing by the opioid system in the brain. Physiological reviews, 89(4), 1379-1412. DOI:10.1152/physrev.00005.200910.1152/physrev.00005.2009448211419789384Search in Google Scholar

9. Barfield, E.T., Moser, V.A., Hand, A., & Grisel, J. (2013). β-endorphin modulates the effect of stress on novelty-suppressed feeding. Frontiers in behavioral neuroscience, 7, 19. DOI:10.3389/fnbeh.2013.0001910.3389/fnbeh.2013.00019359676523503677Open DOISearch in Google Scholar

10. Hegadoren, K.M., O’Donnell, T., Lanius, R., Coupland, N.J., & Lacaze-Masmonteil, N. (2009). The role of β-endorphin in the pathophysiology of major depression. Neuropeptides, 43(5), 341-353. DOI:10.1016/j.npep.2009.06.00419647870Search in Google Scholar

11. Merenlender-Wagner, A., Dikshtein, Y., & Yadid, G. (2009). The β-Endorphin Role in Stress-Related Psychiatric Disorders. Current drug targets, 10(11), 1096-1108. DOI:10.2174/13894500978973514710.2174/13894500978973514719702553Open DOISearch in Google Scholar

12. Trofimenko, A.I., Kade, A.K., Nehaj, F.A., Lebedev, V.P., Levichkin, V.D., & Zanin, S.A. (2014). Dynamics of level β-endorphinins at modeling of the ischemic stroke at rats. Kuban Scientific Medical Bulletin, (3), 115-118. DOI:10.25207/1608-6228-2014-3-115-118 (In Russ.)10.25207/1608-6228-2014-3-115-118(.Open DOISearch in Google Scholar

13. Lebedev, V.P., Savchenko, A.B., Kacnel’son, Ja.S., & Petrjaevskaja, N.V. (1988). Ob opiatnom mehanizme transkranial’noj jelektroanal’gezii u krys i myshej. Fiziol. zhurn. SSSR, 74(9), 1249–1256. (In Russ.)Search in Google Scholar

14. Karkischenko, V.N., Kapanadze, G.D., Dengina, S.E., & Stankova, N.V. (2011). Working out of a technique for physical endurance of small laboratory animals for studying of different medicine. Biomedicine, 1(1), 72-74. (In Russ.)Search in Google Scholar

15. Digurova, I.I., & Gushсhin, A.G. (2013). Influence of stress-resistance on hemorheological indices in norm and under orthostatic stress. Yaroslavl Pedagogical Bulletin, 3(1), 107-110. (In Russ.)Search in Google Scholar

16. Lipatova, A.S., Poljakov, P.P., Kade, A.Kh., Zanin, S.A., Trofimenko, A.I., & Malysheva T.V. (2015). Modification of the procedure TES-therapy for its use in small laboratory rodents. Modern problems of science and education, 5, 347-347. (In Russ.)Search in Google Scholar

17. Molendijk, M.L., & de Kloet, E.R. (2015). Immobility in the forced swim test is adaptive and does not reflect depression. Psychoneuroendocrinology, 62, 389-391. DOI:10.1016/j.psyneuen.2015.08.02810.1016/j.psyneuen.2015.08.028Open DOISearch in Google Scholar

18. Connor, T.J., Kelly, J.P., & Leonard, B.E. (1997). Forced swim test-induced neurochemical, endocrine, and immune changes in the rat. Pharmacology Biochemistry and Behavior, 58(4), 961-967. DOI:10.1016/S0091-3057(97)00028-210.1016/S0091-3057(97)00028-2Open DOISearch in Google Scholar

19. Grace, A.A. (2016). Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nature Reviews Neuroscience, 17(8), 524-532. DOI:10.1038/nrn.2016.5710.1038/nrn.2016.57516656027256556Search in Google Scholar

20. Campus, P., Canterini, S., Orsini, C., Fiorenza, M.T., Puglisi-Allegra, S., & Cabib, S. (2017). Stress-induced reduction of dorsal striatal D2 dopamine receptors prevents retention of a newly acquired adaptive coping strategy. Frontiers in pharmacology, 8, 621. DOI:10.3389/fphar.2017.0062110.3389/fphar.2017.00621560105328955227Search in Google Scholar

21. Wong, D.L., Tai, T.C., Wong-Faull, D.C., Claycomb, R., Meloni, E.G., Myers, K.M., Carlezon Jr, W.A., & Kvetnansky, R. (2012). Epinephrine: A short-and long-term regulator of stress and development of illness. Cellular and molecular neurobiology, 32(5), 737-748. DOI:10.1007/s10571-011-9768-010.1007/s10571-011-9768-022090159Open DOISearch in Google Scholar

22. Lucassen, P.J., Pruessner, J., Sousa, N., Almeida, O.F., Van Dam, A.M., Rajkowska, G., Swaab D.F., & Czéh, B. (2014). Neuropathology of stress. Acta neuropathologica, 127(1), 109-135. DOI:10.1007/s00401-013-1223-510.1007/s00401-013-1223-5388968524318124Open DOISearch in Google Scholar

23. Koolhaas, J.M., De Boer, S.F., Buwalda, B., & Van Reenen, K. (2007). Individual variation in coping with stress: a multidimensional approach of ultimate and proximate mechanisms. Brain, behavior and evolution, 70(4), 218-226. DOI:10.1159/00010548510.1159/00010548517914253Open DOISearch in Google Scholar

24. Tank, A.W., & Lee Wong, D. (2015). Peripheral and central effects of circulating catecholamines. Compr Physiol, 5(1), 1-15. DOI:10.1002/cphy.c14000710.1002/cphy.c14000725589262Open DOISearch in Google Scholar

25. De Miguel, Z., Vegas, O., Garmendia, L., Arregi, A., Beitia, G., & Azpiroz, A. (2011). Behavioral coping strategies in response to social stress are associated with distinct neuroendocrine, monoaminergic and immune response profiles in mice. Behavioural brain research, 225(2), 554-561. DOI:10.1016/j.bbr.2011.08.01110.1016/j.bbr.2011.08.01121864582Open DOISearch in Google Scholar

26. Cozzolino, D., Sasso, F. C., Salvatore, T., Torella, M., Cittadini, A., Gentile, S., Torella R., & Giugliano, D. (2004). Acute effects of β-endorphin on cardiovascular function in patients with mild to moderate chronic heart failure. American heart journal, 148(3), 530. DOI:10.1016/j.ahj.2004.01.02910.1016/j.ahj.2004.01.02915389249Open DOISearch in Google Scholar

27. Bujak, M., & Frangogiannis, N.G. (2009). The role of IL-1 in the pathogenesis of heart disease. Archivum immunologiae et therapiae experimentalis, 57(3), 165-176. DOI:10.1007/s00005-009-0024-y10.1007/s00005-009-0024-y278896419479203Open DOISearch in Google Scholar

28. Goshen, I., Kreisel, T., Ben-Menachem-Zidon, O., Licht, T., Weidenfeld, J., Ben-Hur, T., & Yirmiya, R. (2008). Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Molecular psychiatry, 13(7), 717-728. DOI:10.1038/sj.mp.400205510.1038/sj.mp.400205517700577Open DOISearch in Google Scholar

29. Hueston, C.M., & Deak, T. (2014). The inflamed axis: the interaction between stress, hormones, and the expression of inflammatory-related genes within key structures comprising the hypothalamic–pituitary–adrenal axis. Physiology & behavior, 124, 77-91. DOI:10.1016/j.physbeh.2013.10.03510.1016/j.physbeh.2013.10.03524184413Open DOISearch in Google Scholar

30. Koo, J.W., & Duman, R.S. (2009). Evidence for IL-1 receptor blockade as a therapeutic strategy for the treatment of depression. Current opinion in investigational drugs (London, England: 2000), 10(7), 664-671Search in Google Scholar

31. Leonard, B., & Maes, M. (2012). Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neuroscience & Biobehavioral Reviews, 36(2), 764-785. DOI:10.1016/j.neubiorev.2011.12.00510.1016/j.neubiorev.2011.12.00522197082Open DOISearch in Google Scholar

32. Rohleder, N., Aringer, M., & Boentert, M. (2012). Role of interleukin-6 in stress, sleep, and fatigue. Annals of the New York Academy of Sciences, 1261(1), 88-96. DOI:10.1111/j.1749-6632.2012.06634.x10.1111/j.1749-6632.2012.06634.x22823398Open DOISearch in Google Scholar

33. Hunter, C.A., & Jones, S.A. (2015). IL-6 as a keystone cytokine in health and disease. Nature immunology, 16(5), 448-457. DOI:10.1038/ni.315310.1038/ni.315325898198Open DOISearch in Google Scholar

34. Wu, T.H., & Lin, C.H. (2008). IL-6 mediated alterations on immobile behavior of rats in the forced swim test via ERK1/2 activation in specific brain regions. Behavioural brain research, 193(2), 183-191. DOI:10.1016/j.bbr.2008.05.00910.1016/j.bbr.2008.05.00918573547Open DOISearch in Google Scholar

35. O’Donovan, A., Hughes, B.M., Slavich, G.M., Lynch, L., Cronin, M.T., O’Farrelly, C., & Malone, K. M. (2010). Clinical anxiety, cortisol and interleukin-6: Evidence for specificity in emotion–biology relationships. Brain, behavior, and immunity, 24(7), 1074-1077. DOI:10.1016/j.bbi.2010.03.00310.1016/j.bbi.2010.03.003436108520227485Open DOISearch in Google Scholar

36. Kiecolt-Glaser, J.K., Gouin, J.P., & Hantsoo, L. (2010). Close relationships, inflammation, and health. Neuroscience & Biobehavioral Reviews, 35(1), 33-38. DOI:10.1016/j.neubiorev.2009.09.00310.1016/j.neubiorev.2009.09.003289134219751761Open DOISearch in Google Scholar

37. Ouyang, W., Rutz, S., Crellin, N.K., Valdez, P.A., & Hymowitz, S.G. (2011). Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annual review of immunology, 29, 71-109. DOI:10.1146/annurev-immunol-031210-10131210.1146/annurev-immunol-031210-10131221166540Search in Google Scholar

38. Iyer, S.S., & Cheng, G. (2012). Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Critical Reviews™ in Immunology, 32(1). DOI:10.1615/CritRevImmunol.v32.i1.3010.1615/CritRevImmunol.v32.i1.30Search in Google Scholar

39. Voorhees, J.L., Tarr, A.J., Wohleb, E.S., Godbout, J.P., Mo, X., Sheridan, J.F., Eubank, T.D., & Marsh, C.B. (2013). Prolonged restraint stress increases IL-6, reduces IL-10, and causes persistent depressive-like behavior that is reversed by recombinant IL-10. PloS one, 8(3), e58488. DOI:10.1371/journal.pone.005848810.1371/journal.pone.0058488359279323520517Search in Google Scholar

40. Mesquita, A.R., Correia-Neves, M., Roque, S., Castro, A. G., Vieira, P., Pedrosa, J., Palha, J.A., & Sousa, N. (2008). IL-10 modulates depressive-like behavior. Journal of psychiatric research, 43(2), 89-97. DOI:10.1016/j.jpsychires.2008.02.00410.1016/j.jpsychires.2008.02.00418394646Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other