Mesenchymal Stem Cells Attenuate Acute Liver Failure by Promoting Expansion of Regulatory T Cells in an Indoleamine 2,3-Dioxygenase-Dependent Manner
Published Online: Dec 21, 2020
Page range: 257 - 262
Received: Sep 27, 2018
Accepted: Oct 01, 2018
DOI: https://doi.org/10.2478/sjecr-2018-0043
Keywords
© 2020 Dragana Miloradovic et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The influence of mesenchymal stem cells (MSCs) on the phenotype and function of CD4+CD49b+FoxP3- regulatory cells has not been elucidated. We used Concanavalin A (ConA) - and α-galactosylceramide (α-GalCer)-induced acute liver injury to estimate the effects of MSCs on liver-infiltrating CD4+CD49b+FoxP3-regulatory cells. MSCs significantly reduced ConA- and α-GalCer-mediated liver injury in C57BL/6 mice, as demonstrated by biochemical tests, reduced influx of inflammatory CD4+ T cells, and increased presence of CD4+CD49b+FoxP3- regulatory cells in the injured livers. The number of CD4+CD49b+FoxP3-regulatory cells was also significantly increased in α-GalCer-treated mice that received MSC-derived conditioned medium (MSC-CM). The presence of 1-methyltryptophan, a specific inhibitor of indoleamine 2,3-dioxygenase (IDO), in MSC-CM completely abrogated the hepatoprotective eff ect of MSCs and significantly decreased the total number of liver-infiltrated CD4+CD49b+FoxP3- regulatory cells, indicating the crucial importance of MSC-derived IDO for the expansion of CD4+CD49b+FoxP3- regulatory cells and the consequent MSC-dependent attenuation of acute liver injury.