Cite

1. Williams G, Fruhbeck G. Obesity: Science to Practice. 2009 John Wiley & Sons, Ltd, UK.Search in Google Scholar

2. Chaldakov GN, Fiore M, Tonchev AB, Dimitrov D, Pancheva R, Rančič G, Aloe L. Homo obesus: a metabotrophin- deficient species. Pharmacology and nutrition insight. Curr Pharm Des 2007; 13: 2176-2179.Search in Google Scholar

3. Farag YM, Gaballa MR. Diabesity: an overview of a rising epidemic. Mephrol Dial Transplant 2011;26:28-35. doi: 10.1093/ndt/gfq57610.1093/ndt/gfq57621045078Search in Google Scholar

4. Aloe L, Tonchev AB, Fiore M, Chaldakov GN. Homo diabesus: involvement of metabotrophic factors. Adipobiology 2013; 5: 45-49.10.14748/adipo.v5.297Search in Google Scholar

5. Louise TE, Saeed N, Hajnal JV, Brynes A,Goldstone AP, FrostG, et al. Magnetic resonance imaging of total body fat. J Appl Physiol 1998; 85: 1778-1785.10.1152/jappl.1998.85.5.17789804581Search in Google Scholar

6. Jin C, Flavell RA. Innate sensors of pathogen and stress: linking inflammation to obesity. J Allergy Clin Immunol 2013; 132:287-294. doi:10.1016/j.jaci.2013. 06.022.Search in Google Scholar

7. Sacks H, Symonds ME. Anatomical locations of human brown adipose tissue functional relevance and implications in obesity and type 2 diabetes. Diabetes 2013; 62:1783-1790.10.2337/db12-1430366160623704519Search in Google Scholar

8. Giralt M, Villarrova F. White, brown, beige/brite: different adipose cells for different functions? Endocrinology 2013; 154:2992-3000. doi: 10.1210/en.2013-1403.10.1210/en.2013-140323782940Search in Google Scholar

9. Chaldakov GN, Stankulov IS, Hristova M, Ghenev PI.Adipobiology of disease: adipokines and adipokinetargeted pharmacology. Curr Pharm Des 2003; 9: 1023-1031.10.2174/138161203345515212678860Search in Google Scholar

10. Chaldakov GN. Cardiovascular adipobiology: a novel.Heart-associated adipose tissue in cardiovascular disease.Ser J Exp Clin Res 2008; 9:81-88.Search in Google Scholar

11. Renes J, Mariman E. Application of proteomics technology in adipocyte biology. Mol Biosyst 2013; 9:1076-1091.10.1039/c3mb25596d23629546Search in Google Scholar

12. Chaldakov GN, Tonchev AB, Fiore M, Hristova MG, Pancheva R, Rancic G, Aloe L. Implication for the future of obesity management. In: G. Fruhbeck, editor.Peptides in Energy Balance and Obesity. CAB International 2009; pp 369-389.10.1079/9781845934071.0369Search in Google Scholar

13. Sornelli F, Fiore M, Chaldakov GN, Aloe L. Adipose tissue-derived nerve growth factor and brain-derived neurotrophic factor: results from experimental stress and diabetes. Gen Physiol Biophys 2009; 28:179-183.Search in Google Scholar

14. Levi-Montalcini R. The nerve growth factor 35 years later. Science 1987; 237:1154-1162. doi:10.1126/science. 330691610.1126/scienceSearch in Google Scholar

15. Yanev S, Aloe L, Fiore F, Chaldakov GN. Neurotrophic and metabotrophic potential of nerve growth factor and brain-derived neurotrophic factor: Linking cardiometabolic and neuropsychiatric diseases. World J Pharmacol 2013; 2: 92-99. doi:10.5497/wjp.v2.i4.92.10.5497/wjp.v2.i4.92Search in Google Scholar

16. Chaldakov GN. The metabotrophic NGF and BDNF: an emerging concept. Arch Ital Biol 2011;149: 257-263.Search in Google Scholar

17. Gomez-Pinilla F, Vaynman S, Ying Z. Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur J Neurosci 2008; 28: 2278-2287. doi: 10.1111/j.1460-9568 .2008.06524.xSearch in Google Scholar

18. Hiriart-Urdanivia M, Tableros VN, Velasco M, Larque C, Cabrera-Vasquez S, Soto CS, et al. Insulin regulation in development and obesity. In: M. Hiriart-Urdanivia and J. Mas-Oliva, editors. Advances in Obesity-diabetes Research at UNAM (Universidad Nacional Autonoma de Mexico). Manual Moderno, Mexico D.F., Bogota, DC. 2010; pp 69-79.Search in Google Scholar

19. Chaldakov GN, Fiore M, Stankulov IS, Manni L, Hristova MG, Antonelli A, et al. Neurotrophin presence in human coronary atherosclerosis and metabolic syndrome: a role for NGF and BDNF in cardiovascular disease? Prog Brain Res 2004; 146: 279-289. doi: 10.1016/ S0079-6123(03)46018-410.1016/S0079-6123(03)46018-4Search in Google Scholar

20. Yamanaka M, Itakura Y, Ono-Kishino M, Tsuchida A, Nakagawa T, Taiji M. Intermittent administration of brain-derived neurotrophic factor (BDNF) ameliorates glucose metabolism and prevents pancreatic exhaustion in diabetic mice. J Biosci Bioeng 2008; 105: 395-402. doi: 10.1263/jbb.105.39510.1263/jbb.105.39518499057Search in Google Scholar

21. de la Monte S, Wands JR. Alzheimer’s disease is type 3 diabetes - evidence reviewed. J Diabetes Sci Technol 2008; 2: 1101-1113.10.1177/193229680800200619276982819885299Search in Google Scholar

22. Chaldakov GN, Tuncel N, Beltowski J, Fiore M, Ranćić G, Tonchev A, et al Adipoparacrinology: an emerging field in biomedical research. Balkan Med J 2012; 29: 2-9. doi: 10.5152/balkanmedj.2012.02210.5152/balkanmedj.2012.022Search in Google Scholar

23. Chaldakov GN, Fiore M, Ghenev PI, Beltowski J, Rancic G, Tuncel N, Aloe L. Triactome: neuro-immune-adipose interactions. Implication in vascular biology. Front Immunol 2014; 5:130. doi: 10.3389/fimmu.2014.0013010.3389/fimmu.2014.00130398656124782857Search in Google Scholar

24. Chaldakov GN, Fiore M, Tonchev AB, Aloe L. Neuroadipology: a novel component of neuroendocrinology. Cell Biol. Int 2010; 34: 1051-1053.Search in Google Scholar

25. Manni L, Nikolova V, Vyagova D, Chaldakov GN, Aloe L. Reduced plasma levels of NGF and BDNF in patients with acute coronary syndromes. Int J Cardiol 2005; 102:169-171.10.1016/j.ijcard.2004.10.04115939120Search in Google Scholar

26. Ejiri J, Inoue N, Kobayashi S, Shiraki R, Otsui K, Honjo T, et al. Possible role of brain-derived neurotrophic factor in the pathogenesis of coronary artery disease. Circulation 2005; 112: 2114-2120.10.1161/CIRCULATIONAHA.104.47690316186425Search in Google Scholar

27. Sposato V, Manni L, Chaldakov GN, Aloe L. Streptozotocin- induced diabetes is associated with changes in NGF levels in pancreas and brain. Arch Ital Biol 145: 87-97, 2007.Search in Google Scholar

28. Larrieta ME, Vital P, Mendoza-Rodriguez A, Cerbon M, Hiriart M. Nerve growth factor increases in pancreatic beta cells after streptozotocin-induced damage in rats. Exp Biol Med (Maywood) 2006; 231: 396-402.10.1177/15353702062310040516565435Search in Google Scholar

29. Hoang PT, Park P, Cobb LJ, Paharkova-Vatchkova V, Hakimi M, Cohen P, et al. The neurosurvival factor Humanin inhibits beta-cell apoptosis via signal transducer and activator of transcription 3 activation and delays and ameliorates diabetes in nonobese diabetic mice. Metabolism 2010; 59:343-349. doi: 10.1016/j. metabol.2009.08.001.Search in Google Scholar

30. Mahboobi H, Golmirzaei J, Gan SH, Jalalian M, Jalalian M. Humanin: a possible linkage between Alzheimer’s disease and type 2 diabetes. CNS Neurol Disord Drug Targets 2013 Dec 22. [Epub ahead of print].10.2174/187152731266613122311014724365186Search in Google Scholar

31. Novelle MG, Contreras C, Romero-Pico A, Lopez M, Dieguez C. Irisin, two years later. Int J Endocrinol 2013; 2013:746281.10.1155/2013/746281383548124298283Search in Google Scholar

32. Spiegelman BM. Banting Lecture 2012: Regulation of adipogenesis: toward new therapeutics for metabolic disease. Diabetes 2013; 62:1774-1782. doi: 10.2337/ db12-1665.10.2337/db12-1665366162123704518Search in Google Scholar

33. Perry T, Lahiri DK, Chen D, Zhou J, Shaw KT, Egan JM, et al. A novel neurotrophic property of glucagon-like peptide 1: a promoter of nerve growth factor-mediated differentiation in PC12 cells. J Pharmacol Exp Ther 2002; 300:958-966.10.1124/jpet.300.3.95811861804Search in Google Scholar

34. Li L. Is glucagon-like peptide-1, an agent treating diabetes, a new hope for Alzheimer’s disease? Neurosci Bull 2007; 23: 58-65. doi: 10.1007/s12264-007-0009-y10.1007/s12264-007-0009-y555057017592527Search in Google Scholar

35. Prior M, Dargusch R, Ehren JL, Chiruta C, Schubert D.The neurotrophic compound J147 reverses cognitive impairment aged Alzheimer’s disease mice. Alzheimers Res Ther 2013; 5: 25. doi: 10.1186/alzrt17910.1186/alzrt179370687923673233Search in Google Scholar

36. Ferenz KB, Rose K, Konig S, Krieglstein J. ATP-NGFcomplex, but not NGF, is the neuroprotective ligand.Neurochem Int 2011; 59: 989-995. doi: 10.1016/j. neuint.2011.08.020Search in Google Scholar

37. Liu J, Li JD, Lu J, Xing J, Li J. Contribution of nerve growth factor to upregulation of P2X₃ expression in DRG neurons of rats with femoral artery occlusion. Am J Physiol Heart Circ Physiol 2011; 301: H1070-H1079 doi: 10.1152/ajpheart.00188.201110.1152/ajpheart.00188.2011319107521642505Search in Google Scholar

38. Yoo DY, Kim W, Nam SM, Yoo KY, Lee CH, Choi JH, Won MH, Hwang IK, Yoon YS. Reduced cell proliferation and neuroblast differentiation in the dentate gyrus of high fat diet-fed mice are ameliorated by metformin and glimepiride treatment. Neurochem Res 2011; 36: 2401-2408. doi: 10.1007/s11064-011-0566-310.1007/s11064-011-0566-321818657Search in Google Scholar

39. Hernandez-Pedro N, Granados-Soto V, Ordonez G, Pineda B, Rangel-Lopez E, Salazar-Ramiro A, et al.Vitamin A increases nerve growth factor and retinoic acid receptor beta and improves diabetic neuropathy in rats. Trans Res 2014; S1931-5244(14). doi: 10.1016/j. trsl.2014.04.002Search in Google Scholar

40. Rabe T, Shamsi F, Mansouri A. The roles of microRNAs in pancreas development and regeneration. Biomed Rev 2013; 24: 57-65.10.14748/bmr.v24.22Search in Google Scholar

41. Mortuza R, Feng B, Chakrabarti S. miR-195 regulates SIRT1-mediated changes in diabetic retinopathy. Diabetologia 2014; 57:1037-1046. doi: 10.1007/s00125-014 -3197-9.Search in Google Scholar

42. Cyr NE, Steger JS, Toorie AM, Yang JZ, Stuart R, Nillni EA. Central Sirt1 regulates body weight and energy expenditure along with the POMC-derived peptide α-MSH and the processing enzyme CPE production in diet-induced obesity male rats. Endocrinology 2014 Apr 28: en20131998.10.1210/en.2013-1998406018524773342Search in Google Scholar

43. Iacobellis G, Di Gioia C, Petramala L, Chiappetta C, Serra V, Zinnamosca L, et al. Brown fat expresses adiponectin in humans. Int J Endocrinol 2013; 2013:126751. doi: 10.1155/2013/126751.10.1155/2013/126751384804924348550Search in Google Scholar

44. Tan BK, Adya R, Randeva HS. Omentin: a novel link between inflammation, diabesity, and cardiovascular disease. Trends Cardiovasc Med 2010; 20:143-148. doi: 10.1016/j.tcm.2010.12.002.10.1016/j.tcm.2010.12.00221742269Search in Google Scholar

45. Castan-Laurell I, Dray C, Attane C, Duparc T, Knauf C, Valet P. Apelin, diabetes, and obesity. Endocrine 2011; 40:1-9. doi: 10.1007/s12020-011-9507-9.10.1007/s12020-011-9507-921725702Search in Google Scholar

46. Wang GX, Cho KW, Uhm M, Hu CR, Li S, Cozacov Z, et al. Otopetrin 1 protects mice from obesity-associated metabolic dysfunction through attenuating adipose tissue inflammation. . Diabetes 2013 Dec 30. [Epub ahead of print]10.2337/db13-1139396450424379350Search in Google Scholar

47. Karatzas A, Katsanos K, Lilis I, Papadaki H, Kitrou P, Lecht S, et al. NGF promotes hemodynamic re covery in a rabbit hindlimb ischemic model through trkA- and VEGFR2-dependent pathways. J Cardiovasc Pharmacol 2013; 62:270-277. doi: 10.1097/ FJC.0b013e3182982de7.10.1097/FJC.0b013e3182982de723644989Search in Google Scholar

48. Aloe L, Tirassa P, Lambiase A. The topical application of nerve growth factor as a pharmacological tool for human corneal and skin ulcers. Pharmacol Res 2008; 57: 253-258. doi: 10.1016/j.phrs.2008.01.01010.1016/j.phrs.2008.01.01018329283Search in Google Scholar

49. Schaffler A, Scholmerich J, Buechler C. The role of ”adipotrophins” and the clinical importance of a potential hypothalamic-pituitary-adipose axis. Nat Clin Pract Endocrinol Metab 2006; 2:374-383.10.1038/ncpendmet019716932320Search in Google Scholar

50. Hausman GJ, Barb CR, Dean RG. Patterns of gene expression in pig adipose tissue: insulin-like growth factor system proteins, neuropeptide Y (NPY), NPY receptors, neurotrophic factors and other secreted factors.Domest Anim Endocrinol 2008;35:24-34.10.1016/j.domaniend.2008.01.00418325722Search in Google Scholar

51. Rao AA. Views and opinion on BDNF as a target for diabetic cognitive dysfunction. Bioinformation 2013; 9: 551-554. doi: 10.6026/9732063000955110.6026/97320630009551371718123888094Search in Google Scholar

52. Meek TH, Wisse BE, Thaler JP, Guyenet SJ, Matsen ME, Fischer JD, et al. BDNF action in the brain attenuates diabetic hyperglycemia via insulin-independent inhibition of hepatic glucose production. Diabetes 2013; 62: 1512-1518. doi: 10.2337/db12-083710.2337/db12-0837363661823274899Search in Google Scholar

53. Byerly MS, Swanson RD, Semsarzadeh NN, McCulloh PS, Kwon K, Aja S, et al. Identification of hypothalamic neuron-derived neurotrophic factor as a novel factor modulating appetite. Am J Physiol Regul Integr Comp Physiol 2013; 304: R1085-R1095. doi: 10.1152/ ajpregu.00368.201210.1152/ajpregu.00368.2012368079223576617Search in Google Scholar

54. Kostopoulos CG, Spiroglou SG, Varakis JN, Apostolakis E, Papadaki HH. Adiponectin/T-cadherin and apelin/ APJ expression in human arteries and periadventitial fat: implication of local adipokine signaling in atherosclerosis? Cardiovasc Pathol 2014; doi: org/10.1016/j. carpath.2014.02.00310.1016/j.carpath.2014.02.00324675084Search in Google Scholar

55. Bouckenooghe T, Sisino G, Aurientis S, Chinetti-Gbaguidi G, Kerr-Conte J, Staels B, , et al. Adipose tissue macrophages (ATM) of obese patients are releasing increased levels of prolactin during an inflammatory challenge: a role for prolactin in diabesity? Biochim Biophys Acta 2014; 1842:584-593. doi: 10.1016/j. bbadis.2013.12.005.Search in Google Scholar

56. Benga G, Popescu O, Pop VI, Holmes RP. p-(Chloromercuri) benzenesulfonate binding by membrane proteins and the inhibition of water transport in human erythrocytes. Biochemistry 1986; 25: 1535-1538. doi:10.1021/bi00355a01110.1021/bi00355a0113011064Search in Google Scholar

57. Benga G. Aquaporin-7 and adipose tissue. Biomed Rev 2006; 17: 102-108.Search in Google Scholar

58. Frühbeck G, Catalan V, Gomes-Ambrosi J, Rodriguez A.Aquaporin-7 and glycerol permeability as novel obesity drugtraget pathwas. Trends Pharmacol Sci 2006; 27: 345-347.10.1016/j.tips.2006.05.00216764946Search in Google Scholar

59. Jackson HM, Soto I, Graham LC, Carter GW, Howell GR. Clustering of transcriptional profiles identifies changes to insulin signaling as an early event in a mouse model of Alzheimer’s disease. BMC Genomics 2013 14:831. doi:10.1186/1471-2164-14-83110.1186/1471-2164-14-831390702224274089Search in Google Scholar

60. Luchsinger JA, Mayeux R. Adiposity and Alzheimer’s disease. Curr Alzheimer Res 2007; 4: 127-134. doi: 10.2174/15672050778036210010.2174/156720507780362100189002517430235Search in Google Scholar

61. Naderali EK, Ratcliffe SH, Dale MC. Review: obesity and Alzheimer’s disease: a link between body weight and cognitive function in old age. Am J Alzheimers Dis Other Demen 2009; 24:445-449.10.1177/153331750934820819801534Search in Google Scholar

62. Frisardi V, Solfrizzi V, Seripa D, Capurso C, Santamato A, Sancarlo D, et al. Metabolic-cognitive syndrome: A cross-talk between metabolic syndrome and Alzheimer’s disease. Ageing Res Rev 2010; 9:399-417.10.1016/j.arr.2010.04.00720444434Search in Google Scholar

63. O’Neill C, Kiely AP, Coakley MF, Manning S, Long- Smith CM. Insulin and IGF-1 signalling: longevity, protein homoeostasis and Alzheimer’s disease. Biochem Soc Trans 2012; 40:721-727.10.1042/BST2012008022817723Search in Google Scholar

64. de la Monte SM. Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res 2012; 9:35-66.10.2174/156720512799015037334998522329651Search in Google Scholar

65. Hildreth KL, Van Pelt RE, Schwartz RS. Obesity, insulin resistance, and Alzheimer’s disease. Obesity 2012; 20:1549-1557.10.1038/oby.2012.19431495022310232Search in Google Scholar

66. Passaro A, Dalla Nora E, Morieri ML, Soavi C, Sanz JM, Zurlo A, et al. Brain-derived neurotrophic factor plasma levels: Relationship with dementia and diabetes in the elderly population. J Gerontol A Biol Sci Med Sci 2014 Mar 12. [Epub ahead of print]10.1093/gerona/glu02824621946Search in Google Scholar

67. Li Z, Zhang C, Fan J, Yuan C, Huang J, Chen J, et al.Brain-derived neurotrophic factor levels and bipolar disorder in patients in their first depressive episode: 3-year prospective longitudinal study. Br J Psychiatry 2014; doi:10.1192/bjp.bp.113.134064 10.1192/bjp.bp.113.13406424764546Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other