Predictive Modelling of Pavement Quality Fibre-Reinforced Alkali-Activated Nano-Concrete Mixes through Artificial Intelligence
, , and
Mar 24, 2025
About this article
Article Category: Original Study
Published Online: Mar 24, 2025
Page range: 389 - 416
Received: Sep 19, 2024
Accepted: Jan 22, 2025
DOI: https://doi.org/10.2478/sgem-2025-0007
Keywords
© 2025 Akhila Sheshadri et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1:
![The yearly growth of National Highways in India [15].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/676b20907306cc7e8721e5bc/j_sgem-2025-0007_fig_001.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250911%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250911T221142Z&X-Amz-Expires=3600&X-Amz-Signature=7cdce571635a6634891d67ec7b74b84f3ba3f65bee942299e9d853acf35f281a&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:

Figure 11:

Figure 12:

Figure 13:

Mix Design of PQAC mixes with fibres_
% Addition of fibres (by volume of binder) | 0.4% | 0.8% | 1.2% | 1.6% | 2.0% | 0.4% | 0.8% | 1.2% | 1.6% | 2.0% |
Materials | in kg/m3 | |||||||||
GGBS | 493 | 493 | 493 | 493 | 493 | 493 | 493 | 493 | 493 | 493 |
NaOH flakes | 11.2 | 11.2 | 11.2 | 11.2 | 11.2 | 11.2 | 11.2 | 11.2 | 11.2 | 11.2 |
Liquid sodium silicate | 75.12 | 75.12 | 75.12 | 75.12 | 75.12 | 75.12 | 75.12 | 75.12 | 75.12 | 75.12 |
Water | 157.56 | 157.56 | 157.56 | 157.56 | 157.56 | 157.56 | 157.56 | 157.56 | 157.56 | 157.56 |
Natural coarse aggregate | 1071.4 | 1071.4 | 1071.4 | 1071.4 | 1071.4 | 1071.4 | 1071.4 | 1071.4 | 1071.4 | 1071.4 |
River sand fine aggregate | 577.84 | 577.84 | 577.84 | 577.84 | 577.84 | 577.84 | 577.84 | 577.84 | 577.84 | 577.84 |
PVA | 0.748 | 1.49 | 2.24 | 2.99 | 3.74 | - | - | - | - | - |
PPF | - | - | - | - | - | 0.612 | 1.224 | 1.836 | 2.448 | 3.06 |
Mix Design of PQAC mixes with nano-additives_
% Addition of nano-additives (by weight of binder) | 0% | 0.5% | 1.0% | 1.5% | 2.0% | 0% | 0.75% | 1.0% | 1.25% |
Materials | in kg/m3 | ||||||||
GGBS | 493 | 493 | 493 | 493 | 493 | 493 | 493 | 493 | 493 |
NaOH flakes | 11.2 | 11.2 | 11.2 | 11.2 | 11.2 | 11.2 | 11.2 | 11.2 | 11.2 |
Liquid sodium silicate | 75.12 | 75.12 | 75.12 | 75.12 | 75.12 | 75.12 | 75.12 | 75.12 | 75.12 |
Water | 157.56 | 157.56 | 157.56 | 157.56 | 157.56 | 157.56 | 157.56 | 157.56 | 157.56 |
Natural coarse aggregate | 1071.4 | 1071.4 | 1071.4 | 1071.4 | 1071.4 | 1071.4 | 1071.4 | 1071.4 | 1071.4 |
River sand fine aggregate | 577.84 | 577.84 | 577.84 | 577.84 | 577.84 | 577.84 | 577.84 | 577.84 | 577.84 |
Nano-silica | 0 | 2.47 | 4.93 | 7.39 | 9.86 | - | - | - | - |
Nano-alumina | - | - | - | - | - | 2.47 | 3.69 | 4.93 | 6.16 |
Performance results of the predictive models_
Linear Regression | 0.629266 | 0.488546 | 0.395976 | 0.608906 | 0.445094 |
Decision Tree | 0.452297 | 0.382320 | 0.204573 | 0.797950 | 0.713217 |
Random Forest | 0.453657 | 0.383848 | 0.205805 | 0.796733 | 0.707697 |
Support Vector | 0.636715 | 0.492057 | 0.405406 | 0.599593 | 0.454470 |
ADA Boost | 0.454821 | 0.384150 | 0.206862 | 0.795688 | 0.714149 |
Gradient Boosting | 0.459522 | 0.390104 | 0.211160 | 0.791443 | 0.71143811 |
Statistical summary of the dataset_
570 | 493 | 0 | 493 | 493 | 493 | 493 | 493 | |
570 | 11.2 | 0 | 11.2 | 11.2 | 11.2 | 11.2 | 11.2 | |
570 | 75.12 | 0 | 75.12 | 75.12 | 75.12 | 75.12 | 75.12 | |
570 | 157.56 | 0 | 157.56 | 157.56 | 157.56 | 157.56 | 157.56 | |
570 | 1071.4 | 0 | 1071.4 | 1071.4 | 1071.4 | 1071.4 | 1071.4 | |
570 | 577.84 | 0 | 577.84 | 577.84 | 577.84 | 577.84 | 577.84 | |
570 | 1.3 | 2.81 | 0 | 0 | 0 | 0 | 9.86 | |
570 | 0.91 | 1.87 | 0 | 0 | 0 | 0 | 6.16 | |
570 | 0.59 | 1.13 | 0 | 0 | 0 | 0.75 | 3.74 | |
570 | 0.48 | 0.92 | 0 | 0 | 0 | 0.61 | 3.06 | |
570 | 5.34 | 0.94 | 3.69 | 4.64 | 5.17 | 5.81 | 8.2 |
Relative frequency distribution of the prediction-to-test STS ratio_
Linear Regression | 1.003337 | 0.99848 | 0.108407 | 0.154706 |
Decision Tree | 1.002638 | 0.98704 | 0.0855 | 0.399816 |
Random Forest | 1.002764 | 0.98737 | 0.085843 | 0.40379 |
Support Vector | 1.004801 | 0.99847 | 0.109484 | 0.076785 |
ADA Boost | 0.999269 | 0.98854 | 0.084598 | 0.367988 |
Gradient Boosting | 1.004576 | 0.99069 | 0.08731 | 0.416545 |