Open Access

Small-strain stiffness of selected anthropogenic aggregates from bender element tests


Cite

Arroyo, M., Muir Wood, D., and Greening, P.D. (2003). Source near-field effects and pulse tests in soil samples. Gėotechnique. 53(3), 337–45. http://doi.org/10.1680/geot.2003.53.3.337. ArroyoM. Muir WoodD. GreeningP.D. 2003 Source near-field effects and pulse tests in soil samples Gėotechnique 53 3 337 45 http://doi.org/10.1680/geot.2003.53.3.337. Search in Google Scholar

Arulnathan, R., Boulanger, R.W. and Riemer, M.F. (1998). Analysis of bender element tests. ASTM Geotechnical Testing J. 21(2), 120–31. http://doi.org/10.1520/gtj10750j. ArulnathanR. BoulangerR.W. RiemerM.F. 1998 Analysis of bender element tests ASTM Geotechnical Testing J. 21 2 120 31 http://doi.org/10.1520/gtj10750j. Search in Google Scholar

Basu, D., Misra, A., Puppala, A.J. and Chittoori, C.S. (2013). Sustainability in Geotechnical Engineering. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris 2013. 3171–3174. BasuD. MisraA. PuppalaA.J. ChittooriC.S. 2013 Sustainability in Geotechnical Engineering In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering Paris 2013 3171 3174 Search in Google Scholar

Behera, M., Bhattacharyya, S.K., Minocha, A.K., Deoliya, R. and Maiti, S. (2014). Recycled aggregate from C&D waste & its use in concrete – A breakthrough towards sustainability in construction sector: A review. Constr Build Mater. 68, 501–516. http://dx.doi.org/10.1016/j.conbuildmat.2014.07.003. BeheraM. BhattacharyyaS.K. MinochaA.K. DeoliyaR. MaitiS. 2014 Recycled aggregate from C&D waste & its use in concrete – A breakthrough towards sustainability in construction sector: A review Constr Build Mater 68 501 516 http://dx.doi.org/10.1016/j.conbuildmat.2014.07.003. Search in Google Scholar

Blewett, J., Blewett, I. J., and Woodward, P. K., (2000). Phase and Amplitude Responses Associated with the Measurement of Shear-Wave Velocity in Sand by Bender Elements. Can. Geotech. J. 37, 1348–1357. https://doi.org/10.1139/t00-047. BlewettJ. BlewettI. J. WoodwardP. K. 2000 Phase and Amplitude Responses Associated with the Measurement of Shear-Wave Velocity in Sand by Bender Elements Can. Geotech. J 37 1348 1357 https://doi.org/10.1139/t00-047. Search in Google Scholar

Brignoli, E., Gotti, M., and Stokoe K.H. II (1996). Measurement of shear waves in laboratory specimens by means of piezoelectric transducers. ASTM Geotech. Test. J. 19 (4), 384–397. BrignoliE. GottiM. StokoeK.H.II 1996 Measurement of shear waves in laboratory specimens by means of piezoelectric transducers ASTM Geotech. Test. J. 19 4 384 397 Search in Google Scholar

Gabryś, K., Dołżyk-Szypcio, K., Szypcio, Z. and Sas W. (2023a). Stress–Strain Behavior of Crushed Concrete as a Special Anthropogenic Soil. Materials. 16(23), 7381. https://doi.org/10.3390/ma16237381. GabryśK. Dołżyk-SzypcioK. SzypcioZ. SasW. 2023a Stress–Strain Behavior of Crushed Concrete as a Special Anthropogenic Soil Materials 16 23 7381 https://doi.org/10.3390/ma16237381. Search in Google Scholar

Gabryś, K., Šadzevičius, R., Dapkienė, M., Ramukevičius, D. and Sas, W. (2023b). Effect of a Fine Fraction on Dynamic Properties of Recycled Concrete Aggregate as a Special Anthropogenic Soil. Materials. 16, 4986. https://doi.org/10.3390/ma16144986. GabryśK. ŠadzevičiusR. DapkienėM. RamukevičiusD. SasW. 2023b Effect of a Fine Fraction on Dynamic Properties of Recycled Concrete Aggregate as a Special Anthropogenic Soil Materials 16 4986 https://doi.org/10.3390/ma16144986. Search in Google Scholar

Gabryś, K., Soból, E., Sas, W., Šadzevičius, R. and Skominas, R. (2021). Warsaw glacial quartz sand with different grain-size characteristics and its shear wave velocity from various interpretation methods of BET. Materials. 14(3), 544. https://www.mdpi.com/1996-1944/14/3/544. GabryśK. SobólE. SasW. ŠadzevičiusR. SkominasR. 2021 Warsaw glacial quartz sand with different grain-size characteristics and its shear wave velocity from various interpretation methods of BET Materials 14 3 544 https://www.mdpi.com/1996-1944/14/3/544. Search in Google Scholar

Gabryś, K., Sas, W., Soból, E. and Głuchowski, A. (2017). Application of Bender Elements Technique in Testing of Anthropogenic Soil—Recycled Concrete Aggregate and Its Mixture with Rubber Chips. Appl. Sci. 7, 741. https://doi.org/doi:10.3390/app7070741. GabryśK. SasW. SobólE. GłuchowskiA. 2017 Application of Bender Elements Technique in Testing of Anthropogenic Soil—Recycled Concrete Aggregate and Its Mixture with Rubber Chips Appl. Sci 7 741 https://doi.org/doi:10.3390/app7070741. Search in Google Scholar

Hajian, A. and Bayat, M. (2022). Prediction of maximum shear modulus (Gmax) of granular soil using empirical, neural network and adaptive neuro fuzzy inference system models. Geomech. Eng. 31(3), 291–304. https://doi.org/10.12989/gae.2022.31.3.291. HajianA. BayatM. 2022 Prediction of maximum shear modulus (Gmax) of granular soil using empirical, neural network and adaptive neuro fuzzy inference system models Geomech. Eng 31 3 291 304 https://doi.org/10.12989/gae.2022.31.3.291. Search in Google Scholar

Molina-Gómez, F., Viana da Fonseca, A., Ferreira, C. and Camacho-Tauta, J. (2023). Small-strain stiffness of liquefiable sands: a comparison between bender elements and resonant-column tests. In Proceedings of the 8th International Symposium on Deformation Characteristic of Geomaterials, Porto, Portugal, 3–6 September 2023. Available online. Accessed on 25 October 2023. Molina-GómezF. Viana da FonsecaA. FerreiraC. Camacho-TautaJ. 2023 Small-strain stiffness of liquefiable sands: a comparison between bender elements and resonant-column tests In Proceedings of the 8th International Symposium on Deformation Characteristic of Geomaterials Porto, Portugal 3–6 September 2023 Available online. Accessed on 25 October 2023. Search in Google Scholar

He, H. and Senetakis, K. (2016). A study of wave velocities and poisson ratio of recycled concrete aggregate. Soils Found. 56(4), 593–607. https://doi.org/10.1016/j.sandf.2016.07.002. HeH. SenetakisK. 2016 A study of wave velocities and poisson ratio of recycled concrete aggregate Soils Found 56 4 593 607 https://doi.org/10.1016/j.sandf.2016.07.002. Search in Google Scholar

He, H., Senetakis, K. and Coop, M.R. (2018). Stiffness of a recycled composite aggregate. Soil Dyn. Earthq. Eng. 110, 185–194. https://doi.org/10.1016/j.soildyn.2018.02.001. HeH. SenetakisK. CoopM.R. 2018 Stiffness of a recycled composite aggregate Soil Dyn. Earthq. Eng. 110 185 194 https://doi.org/10.1016/j.soildyn.2018.02.001. Search in Google Scholar

Hopwood, B., Mellor, M. and O’Brien, G. (2005). Sustainable Development: Mapping Different Approaches. Sust. Dev. 13, 38–52. http://dx.doi.org/10.1002/sd.244. HopwoodB. MellorM. O’BrienG. 2005 Sustainable Development: Mapping Different Approaches Sust. Dev. 13 38 52 http://dx.doi.org/10.1002/sd.244. Search in Google Scholar

Ingale, R., Patel, A. and Mandal, E. (2017). Performance analysis of piezoceramic elements in soil: A review. Sens. Actuators A: Phys. 262, 46–63. http://dx.doi.org/10.1016/j.sna.2017.05.025. IngaleR. PatelA. MandalE. 2017 Performance analysis of piezoceramic elements in soil: A review Sens. Actuators A: Phys. 262 46 63 http://dx.doi.org/10.1016/j.sna.2017.05.025. Search in Google Scholar

Jastrzębska, M. and Łupieżowiec, M. (2023). Application of Clay–rubber Mixtures for the Transportation Geotechnics—the Numerical Analysis. Studia Geotech. et Mech. 45(s1), 370–381. https://doi.org/10.2478/sgem-2023-0020. JastrzębskaM. ŁupieżowiecM. 2023 Application of Clay–rubber Mixtures for the Transportation Geotechnics—the Numerical Analysis Studia Geotech. et Mech. 45 s1 370 381 https://doi.org/10.2478/sgem-2023-0020. Search in Google Scholar

Jovicic, V., Coop, M.R. and Simic, M. (1996). Objective criteria for determining Gmax from bender element tests. Géotechnique, 46(2), 357–62. https://doi.org/10.1680/geot.1996.46.2.357. JovicicV. CoopM.R. SimicM. 1996 Objective criteria for determining Gmax from bender element tests Géotechnique 46 2 357 62 https://doi.org/10.1680/geot.1996.46.2.357. Search in Google Scholar

Juneja, A. and Endait, M. (2013). Advances in small strain measurement using bender. In Proc. Indian Geotech. Conf. 1–8. JunejaA. EndaitM. 2013 Advances in small strain measurement using bender In Proc. Indian Geotech. Conf. 1 8 Search in Google Scholar

Lawrence, F.V. (1963). Propagation of ultrasonic waves through sand. Research Report R63 8. Cambridge, MA: Massachusetts Institute of Technology; 1963. LawrenceF.V. 1963 Propagation of ultrasonic waves through sand Research Report R63 8 Cambridge, MA Massachusetts Institute of Technology 1963 Search in Google Scholar

Lee, J.S. and Santamarina, C. (2005). Bender Elements: Performance and Signal Interpretation. J. Geotech. Geoenviron. Eng., 131(9), 1063–1070. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063). LeeJ.S. SantamarinaC. 2005 Bender Elements: Performance and Signal Interpretation J. Geotech. Geoenviron. Eng. 131 9 1063 1070 https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063). Search in Google Scholar

Lings, M. and Greening, P. (2001). A novel bender/extender element for soil testing. Géotechnique. 51(8), 713–7. https://doi.org/10.1680/geot.2001.51.8.713. LingsM. GreeningP. 2001 A novel bender/extender element for soil testing Géotechnique 51 8 713 7 https://doi.org/10.1680/geot.2001.51.8.713. Search in Google Scholar

Kawaguchi, T., Mitachi, T. and Shibuya, S. (2001). Evaluation of shear wave travel time in laboratory bender element test. In Proceedings of 15th International Conference on Soil Mechanics and Geotechnical Engineering, Istanbul, Vol. 1, 155–158. KawaguchiT. MitachiT. ShibuyaS. 2001 Evaluation of shear wave travel time in laboratory bender element test In Proceedings of 15th International Conference on Soil Mechanics and Geotechnical Engineering Istanbul 1 155 158 Search in Google Scholar

Makul, N., Fediuk, R., Amran, M., Zeyad, A.M., Murali, G., Vatin, N., Klyuev, S., Ozbakkaloglu, T. and Vasilev, Y. (2021). Use of Recycled Concrete Aggregates in Production of Green Cement-Based Concrete Composites: A Review. Crystals 11, 232. https://doi.org/10.3390/cryst11030232. MakulN. FediukR. AmranM. ZeyadA.M. MuraliG. VatinN. KlyuevS. OzbakkalogluT. VasilevY. 2021 Use of Recycled Concrete Aggregates in Production of Green Cement-Based Concrete Composites: A Review Crystals 11 232 https://doi.org/10.3390/cryst11030232. Search in Google Scholar

Markowska-Lech, K., Sas, W., Lech, M., Gabryś, K. and Szymański, A. (2018). The small strain stiffness from bender elements tests for clayey soils. Ann. Warsaw Univ. of Life Sci. – SGGW, Land Reclam. 50 (4), 353–371. https://doi.org/10.2478/sggw-2018-0028. Markowska-LechK. SasW. LechM. GabryśK. SzymańskiA. 2018 The small strain stiffness from bender elements tests for clayey soils Ann. Warsaw Univ. of Life Sci. – SGGW, Land Reclam 50 4 353 371 https://doi.org/10.2478/sggw-2018-0028. Search in Google Scholar

Mohsin, A.K.M. and Airey, D. (2003). Automating Gmax Measurements in Triaxial Tests. In Proceedings of the 3rd International Symposium on Deformation Characteristics of Geomaterials, IS-Lyon’03, 24 September 2003, pp.73–80. MohsinA.K.M. AireyD. 2003 Automating Gmax Measurements in Triaxial Tests In Proceedings of the 3rd International Symposium on Deformation Characteristics of Geomaterials IS-Lyon’03 24 September 2003 73 80 Search in Google Scholar

Ogino, T. (2019). Travel time observation using numerical simulation of bender element testing in time and frequency domain. Soils Found. 59(3), 657–670. https://doi.org/10.1016/j.sandf.2019.01.001. OginoT. 2019 Travel time observation using numerical simulation of bender element testing in time and frequency domain Soils Found 59 3 657 670 https://doi.org/10.1016/j.sandf.2019.01.001. Search in Google Scholar

PN-EN ISO 14688-2:2018-05 Rozpoznanie i badania geotechniczne -- Oznaczanie i klasyfikowanie gruntów -- Część 2: Zasady klasyfikowania (In Polish) Geotechnical investigation and testing - Identification and classification of soil - Part 2: Principles for a classification. PN-EN ISO 14688-2:2018-05 Rozpoznanie i badania geotechniczne -- Oznaczanie i klasyfikowanie gruntów -- Część 2: Zasady klasyfikowania (In Polish) Geotechnical investigation and testing - Identification and classification of soil - Part 2: Principles for a classification Search in Google Scholar

Rees, S., Le Compte, A. and Snelling, K. (2013). A new tool for the automated travel time analyses of bender element tests. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, 2013; pp. 2843–2846. ReesS. Le CompteA. SnellingK. 2013 A new tool for the automated travel time analyses of bender element tests In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering Paris, France 2013 2843 2846 Search in Google Scholar

Sanchez-Salinero, I., Roesset, J.M., Stokoe, K.H. and Kenneth, H. (1986). Analytical Studies of Body Wave Propagation and Attenuation, pp. 272. Sanchez-SalineroI. RoessetJ.M. StokoeK.H. KennethH. 1986 Analytical Studies of Body Wave Propagation and Attenuation 272 Search in Google Scholar

Santamarina, J.C. and Fam, M.A. (1997). Discussion on ‘Interpretation of Bender Element Tests’ (paper by Viggiani and Atkinson, 1995). Gėotechnique, 47(4), 873–877. SantamarinaJ.C. FamM.A. 1997 Discussion on ‘Interpretation of Bender Element Tests’ (paper by Viggiani and Atkinson, 1995) Gėotechnique 47 4 873 877 Search in Google Scholar

Sas, W., Gabryś, K., Soból, E. and Szymański, A. (2016). Dynamic Characterization of Cohesive Material Based on Wave Velocity Measurements. Appl. Sci. 6(2), 49. https://doi.org/10.3390/app6020049. SasW. GabryśK. SobólE. SzymańskiA. 2016 Dynamic Characterization of Cohesive Material Based on Wave Velocity Measurements Appl. Sci 6 2 49 https://doi.org/10.3390/app6020049. Search in Google Scholar

Scarrow, J. A. and Gosling, R. C. (1986). An example of rotary core drilling in soils. Geol. Soc. Lond. Eng. Geol. Spec. Publ. 2 (1), 357–363. https://doi.org/10.1144/GSL.1986.002.01.60. ScarrowJ. A. GoslingR. C. 1986 An example of rotary core drilling in soils Geol. Soc. Lond. Eng. Geol. Spec. Publ 2 1 357 363 https://doi.org/10.1144/GSL.1986.002.01.60. Search in Google Scholar

Shirley, D.J. and Anderson, A.L. (1975). In situ measurement of marine sediment acoustical properties during coring in deep water. IEEE Trans Geosci Electron, 13(4), 163–9. ShirleyD.J. AndersonA.L. 1975 In situ measurement of marine sediment acoustical properties during coring in deep water IEEE Trans Geosci Electron 13 4 163 9 Search in Google Scholar

Tasalloti, A., Chiaro, G., Banasiak, L. and Palermo, A. (2020). Experimental investigation of the mechanical behaviour of gravel granulated tyre rubber mixtures. Constr. Build. Mater. 273, 121749. https://doi.org/10.1016/j.conbuildmat.2020.121749. TasallotiA. ChiaroG. BanasiakL. PalermoA. 2020 Experimental investigation of the mechanical behaviour of gravel granulated tyre rubber mixtures Constr. Build. Mater 273 121749 https://doi.org/10.1016/j.conbuildmat.2020.121749. Search in Google Scholar

Viana da Fonseca, A., Ferreira, C. and Fahey, M. (2009). A Framework Interpreting Bender Element Tests, Combining Time-Domain and Frequency-Domain Methods. Geotech. Test. J. 32(2), 1–17. Viana da FonsecaA. FerreiraC. FaheyM. 2009 A Framework Interpreting Bender Element Tests, Combining Time-Domain and Frequency-Domain Methods Geotech. Test. J. 32 2 1 17 Search in Google Scholar

Viggiani, G. (1995). Panelist discussion: Recent advances in the interpretation of bender element tests. In Pre-failure Deformation of Geomaterials. Balkema, Rotterdam, Vol. 2, 1099–1104. ViggianiG. 1995 Panelist discussion: Recent advances in the interpretation of bender element tests In Pre-failure Deformation of Geomaterials Balkema Rotterdam 2 1099 1104 Search in Google Scholar

Viggiani, G. and Atkinson, J. (1995). Stiffness of fine-grained soil at very small strains. Géotechnique, 45(2), 249–65. https://doi.org/10.1680/geot.1995.45.2.249. ViggianiG. AtkinsonJ. 1995 Stiffness of fine-grained soil at very small strains Géotechnique 45 2 249 65 https://doi.org/10.1680/geot.1995.45.2.249. Search in Google Scholar

Wang, Y.H., Lo, K.F., Yan, W.M. and Dong, X.B. (2007). Measurement biases in the Bender element test, J. Geotech. Geoenvironmental Eng. 133, 564–574, http://dx.doi.org/10.1061/(ASCE)1090-0241(2007)133:5(564). WangY.H. LoK.F. YanW.M. DongX.B. 2007 Measurement biases in the Bender element test J. Geotech. Geoenvironmental Eng. 133 564 574 http://dx.doi.org/10.1061/(ASCE)1090-0241(2007)133:5(564). Search in Google Scholar

Wang, Y., Benahmed, N. and Tang A.M. (2017). A novel method for determining the small-strain shear modulus of soil using the bender elements technique. Can Geotech J. 54 (2), 280–9. https://doi.org/10.1139/cgj-2016-0341. WangY. BenahmedN. TangA.M. 2017 A novel method for determining the small-strain shear modulus of soil using the bender elements technique Can Geotech J 54 2 280 9 https://doi.org/10.1139/cgj-2016-0341. Search in Google Scholar

Wang, F., Li, D., Du, W., Zarei, C. and Liu, Y. (2021). Bender Element Measurement for Small-Strain Shear Modulus of Compacted Loess. Int. J. Geomech. 21(5), 04021063. https://doi.org/10.1061/(ASCE)GM.1943-5622.00020. WangF. LiD. DuW. ZareiC. LiuY. 2021 Bender Element Measurement for Small-Strain Shear Modulus of Compacted Loess Int. J. Geomech 21 5 04021063 https://doi.org/10.1061/(ASCE)GM.1943-5622.00020. Search in Google Scholar

Yamashita, S., Fujiwara, T., Kawaguchi, T., Mikami, T., Nakata, Y. and Shibuya, S. 2007. International Parallel Test on the Measurement of Gmax Using Bender Elements. Organized by Technical Committee 29 of the International Society for Soil Mechanics and Geotechnical Engineering (http://www.jiban.or.jp/e/tc29/BE_Inter_PP_Test_en.pdf, last accessed at 5 December 2007). YamashitaS. FujiwaraT. KawaguchiT. MikamiT. NakataY. ShibuyaS. 2007 International Parallel Test on the Measurement of Gmax Using Bender Elements Organized by Technical Committee 29 of the International Society for Soil Mechanics and Geotechnical Engineering (http://www.jiban.or.jp/e/tc29/BE_Inter_PP_Test_en.pdf, last accessed at 5 December 2007). Search in Google Scholar

Youn, J.-U., Choo, Y.-W. and Kim, D.-S. (2008). Measurement of small-strain shear modulus Gmax of dry and saturated sands by bender element, resonant column, and torsional shear tests. Can Geotech J. 45(10), 1426–38. https://doi.org/10.1139/T08-069. YounJ.-U. ChooY.-W. KimD.-S. 2008 Measurement of small-strain shear modulus Gmax of dry and saturated sands by bender element, resonant column, and torsional shear tests Can Geotech J. 45 10 1426 38 https://doi.org/10.1139/T08-069. Search in Google Scholar

Zhou, Y., Chen, Y. and Shamoto, Y. (2010). Free type bender elements for characterising soil in centrifuge model tests, Phys. Model. Geotech. Springman, Taylor Fr. 417, http://dx.doi.org/10.1017/CBO9781107415324.004. ZhouY. ChenY. ShamotoY. 2010 Free type bender elements for characterising soil in centrifuge model tests Phys. Model. Geotech. Springman, Taylor Fr. 417 http://dx.doi.org/10.1017/CBO9781107415324.004. Search in Google Scholar

eISSN:
2083-831X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics