Open Access

Safety of Steel Arch Support Operation During Rock Bursts Under Explosive Atmosphere Conditions


Cite

Brodny J. (2012a). Work parameter identification of sliding joints utilised in yielding steel arch support. Wydawnictwo Politechniki Śląskiej, Gliwice (in Polish). BrodnyJ. 2012a Work parameter identification of sliding joints utilised in yielding steel arch support Wydawnictwo Politechniki Śląskiej Gliwice (in Polish). Search in Google Scholar

Brodny J. (2012b). Analysis of operation of new construction of the frictional joint with the resistance wedge. Archives of Mining Sciences, 57(1), 209–227. BrodnyJ. 2012b Analysis of operation of new construction of the frictional joint with the resistance wedge Archives of Mining Sciences 57 2 209 227 Search in Google Scholar

Brodny J. (2013). Analysis of operation of arch frictional joint loaded with the impact of freely falling mass. Studia Geotechnica et Mechanica, 35(1), 59–72. BrodnyJ. 2013 Analysis of operation of arch frictional joint loaded with the impact of freely falling mass Studia Geotechnica et Mechanica 35 2 59 72 Search in Google Scholar

Brune J. F. (2013). The methane-air explosion hazard within coal mine gobs. SME Transactions, 334, 376–390. BruneJ. F. 2013 The methane-air explosion hazard within coal mine gobs SME Transactions 334 376 390 Search in Google Scholar

Burtan Z., Stasica J., Rak Z. (2017). The influence of natural hazards of disasters on the work safety conditions in Polish coal mining in the years 2000–2016. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk, 101, 7–18 (in Polish). BurtanZ. StasicaJ. RakZ. 2017 The influence of natural hazards of disasters on the work safety conditions in Polish coal mining in the years 2000–2016 Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk 101 7 18 (in Polish). Search in Google Scholar

Ciałkowski B. (1996). Theoretical and experimental foundations of the construction of ŁP support joints for excavations at risk of rock bursts. PhD dissertation. Główny Instytut Górnictwa, Katowice (in Polish). CiałkowskiB. 1996 Theoretical and experimental foundations of the construction of ŁP support joints for excavations at risk of rock bursts PhD dissertation. Główny Instytut Górnictwa Katowice (in Polish). Search in Google Scholar

Cioca I. L., & Moraru R. I. (2012). Explosion and / or fire risk assessment methodology: a common approach, structured for underground coalmine environments. Archives of Mining Sciences, 57(1), 53–60. CiocaI. L. MoraruR. I. 2012 Explosion and / or fire risk assessment methodology: a common approach, structured for underground coalmine environments Archives of Mining Sciences 57 2 53 60 Search in Google Scholar

Cybulski K., Dyduch Z., Hildebrandt R., Koptoń H. (2018). Development of methane explosions in the underground experimental facilities of GIG EM Barbara. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN, 29–40 (in Polish). CybulskiK. DyduchZ. HildebrandtR. KoptońH. 2018 Development of methane explosions in the underground experimental facilities of GIG EM Barbara Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN 29 40 (in Polish). Search in Google Scholar

Dubiński J., Konopko W. (2000). Rock bursts: evaluation, forecast, elimination. Główny Instytut Górnictwa, Katowice (in Polish). DubińskiJ. KonopkoW. 2000 Rock bursts: evaluation, forecast, elimination Główny Instytut Górnictwa Katowice (in Polish). Search in Google Scholar

Eckhoff R. K. (2006). Differences and similarities of gas and dust explosions: A critical evaluation of the European ‘ATEX’directives in relation to dusts. Journal of loss prevention in the process industries, 19(6), 553–560. EckhoffR. K. 2006 Differences and similarities of gas and dust explosions: A critical evaluation of the European ‘ATEX’directives in relation to dusts Journal of loss prevention in the process industries 19 6 553 560 Search in Google Scholar

Gakhar S. J., Taylor S. D., Barker I., Clayton P. (2006). Practical experience in carrying out non-electrical equipment ignition risk assessments. In INSTITUTION OF CHEMICAL ENGINEERS SYMPOSIUM SERIES (Vol. 151, p. 422). Institution of Chemical Engineers; 1999. GakharS. J. TaylorS. D. BarkerI. ClaytonP. 2006 Practical experience in carrying out non-electrical equipment ignition risk assessments In INSTITUTION OF CHEMICAL ENGINEERS SYMPOSIUM SERIES 151 422 Institution of Chemical Engineers 1999 Search in Google Scholar

Ghicioi E., Paraian M., Ridzi T. I., Vatavu N., Lupu L., Jurca A. (2010a). IMPLEMENTING NEW TOOLS FOR THE ASSESSMENT OF NON-ELECTRICAL EQUIPMENT USED IN UNDERGROUND MINES. IN ACCORDANCE WITH THE EUROPEAN DIRECTIVE ATEX 94/9/EC, ADOPTED IN ROMANIA BY GOVERNMENT DECISION NO. 752/2004. Revista Minelor / Mining Revue, 16(1). GhicioiE. ParaianM. RidziT. I. VatavuN. LupuL. JurcaA. 2010a IMPLEMENTING NEW TOOLS FOR THE ASSESSMENT OF NON-ELECTRICAL EQUIPMENT USED IN UNDERGROUND MINES. IN ACCORDANCE WITH THE EUROPEAN DIRECTIVE ATEX 94/9/EC, ADOPTED IN ROMANIA BY GOVERNMENT DECISION NO. 752/2004 Revista Minelor / Mining Revue 16 2 Search in Google Scholar

Ghicioi E., Paraian M., Lupu L., Jurca A. M. (2010b). NEW TOOLS FOR ASSESSMENT OF NON-ELECTRICAL EQUIPMENT INTENDED USE IN FIREDAMP UNDERGROUND MINES, RELATED TO EUROPEAN DIRECTIVE ATEX 94/9/EC, ADOPTED IN ROMANIA BY GOVERNMENT DECISION NO. 752/2004. Annals of the University of Petrosani Mining Engineering, 11. GhicioiE. ParaianM. LupuL. JurcaA. M. 2010b NEW TOOLS FOR ASSESSMENT OF NON-ELECTRICAL EQUIPMENT INTENDED USE IN FIREDAMP UNDERGROUND MINES, RELATED TO EUROPEAN DIRECTIVE ATEX 94/9/EC, ADOPTED IN ROMANIA BY GOVERNMENT DECISION NO. 752/2004 Annals of the University of Petrosani Mining Engineering 11 Search in Google Scholar

Górny M. (2013). History of explosion safety in Poland. Bezpieczeństwo przeciwwybuchowe – wybrane zagadnienia. Praca zbiorowa. Główny Instytut Górnictwa, Katowice, 7–23 (in Polish). GórnyM. 2013 History of explosion safety in Poland Bezpieczeństwo przeciwwybuchowe – wybrane zagadnienia. Praca zbiorowa Główny Instytut Górnictwa Katowice 7 23 (in Polish). Search in Google Scholar

Górny M. (2017). Ignition risk assessment of nonelectrical part of drive system. Napędy i Sterowanie, 19, Nr 10, 82–88 (in Polish). GórnyM. 2017 Ignition risk assessment of nonelectrical part of drive system Napędy i Sterowanie 19 10 82 88 (in Polish). Search in Google Scholar

Hao F., Liu M., Zuo W. (2014). Coal and gas outburst prevention technology and management system for Chinese coal mines: a review. In Mine Planning and Equipment Selection, Springer, Cham, 581–600. HaoF. LiuM. ZuoW. 2014 Coal and gas outburst prevention technology and management system for Chinese coal mines: a review In Mine Planning and Equipment Selection Springer Cham 581 600 Search in Google Scholar

Horst R., Modrzik M., Ficek P., Rotkegel M., Pytlik A. (2018). Corroded steel support friction joint load capacity studies as found in Piast-Ziemowit coal mine. Mining–Informatics, Automation and Electrical Engineering, 56, 81–87. HorstR. ModrzikM. FicekP. RotkegelM. PytlikA. 2018 Corroded steel support friction joint load capacity studies as found in Piast-Ziemowit coal mine Mining–Informatics, Automation and Electrical Engineering 56 81 87 Search in Google Scholar

Horyl P, Šňupárek R., Marsalek P. (2014). Behaviour of frictional joints in steel arch yielding supports. Archives of Mining Sciences 59 (3), 723–734. HorylP ŠňupárekR. MarsalekP. 2014 Behaviour of frictional joints in steel arch yielding supports Archives of Mining Sciences 59 3 723 734 Search in Google Scholar

Horyl P, Šňupárek R., Marsalek P., Pacześniowski K. (2017). Simulation of laboratory test of steel arch support. Archives of Mining Sciences 62 (1), 163–176. HorylP ŠňupárekR. MarsalekP. PacześniowskiK. 2017 Simulation of laboratory test of steel arch support Archives of Mining Sciences 62 2 163 176 Search in Google Scholar

Horyl P., Šňupárek R., Maršálek P., Poruba Z., Pacześniowski K. (2019). Parametric Studies of Total Load-Bearing Capacity of Steel Arch Supports. Acta Montanistica Slovaca, 24(3), 213–222. HorylP. ŠňupárekR. MaršálekP. PorubaZ. PacześniowskiK. 2019 Parametric Studies of Total Load-Bearing Capacity of Steel Arch Supports Acta Montanistica Slovaca 24 3 213 222 Search in Google Scholar

Hudeček V., Zapletal P., Stoniš M., Sojka R. (2012). New recommendations in the area of prediction and prevention of rock and gas outbursts in the Czech Republic. Rudarsko-geološko-naftni zbornik, 25(1), 101–106. HudečekV. ZapletalP. StonišM. SojkaR. 2012 New recommendations in the area of prediction and prevention of rock and gas outbursts in the Czech Republic Rudarsko-geološko-naftni zbornik 25 2 101 106 Search in Google Scholar

Jespen T. (2016). ATEX—Equipment Selection. In: ATEX—Explosive Atmospheres. Springer Series in Reliability Engineering. Springer, Cham. JespenT. 2016 ATEX—Equipment Selection In: ATEX—Explosive Atmospheres. Springer Series in Reliability Engineering Springer Cham Search in Google Scholar

Jurca A. M., Vătavu N., Lupu L., Popa M. (2020). Determining the maximum surface temperature for non-electrical equipment aiming at explosion prevention at protection. In MATEC Web of Conferences (Vol. 305, p. 00026). EDP Sciences. JurcaA. M. VătavuN. LupuL. PopaM. 2020 Determining the maximum surface temperature for non-electrical equipment aiming at explosion prevention at protection In MATEC Web of Conferences 305 00026 EDP Sciences Search in Google Scholar

Kałuża G. (2017). Temperature measurements in the process of testing explosion-proof devices. Maszyny Elektryczne: zeszyty problemowe Nr 1/2017 (113), 85–89 (in Polish). KałużaG. 2017 Temperature measurements in the process of testing explosion-proof devices Maszyny Elektryczne: zeszyty problemowe 1/2017 113 85 89 (in Polish). Search in Google Scholar

Krause E., Smoliński A. (2013). Analysis and assessment of parameters shaping methane hazard in longwall areas. Journal of Sustainable Mining, 12(1), 13–19. KrauseE. SmolińskiA. 2013 Analysis and assessment of parameters shaping methane hazard in longwall areas Journal of Sustainable Mining 12 2 13 19 Search in Google Scholar

Krause E., Skiba J. (2014). Formation of methane hazard in longwall coal mines with increasingly higher production capacity. International Journal of Mining Science and Technology, 24(3), 403–407. KrauseE. SkibaJ. 2014 Formation of methane hazard in longwall coal mines with increasingly higher production capacity International Journal of Mining Science and Technology 24 3 403 407 Search in Google Scholar

Lebecki K., Cybulski K., Śliz J., Dyduch Z., Wolański P. (1995). Large scale grain dust explosions-research in Poland. Shock Waves, 5(1–2), 109–114. LebeckiK. CybulskiK. ŚlizJ. DyduchZ. WolańskiP. 1995 Large scale grain dust explosions-research in Poland Shock Waves 5 1–2 109 114 Search in Google Scholar

Li G., Shang R. X., Yu Y. J., Wang J. Z., Yuan C. M. (2013). Influence of coal dust on the ignition of methane/air mixtures by friction sparks from rubbing of titanium against steel. Fuel, 113, 448–453. LiG. ShangR. X. YuY. J. WangJ. Z. YuanC. M. 2013 Influence of coal dust on the ignition of methane/air mixtures by friction sparks from rubbing of titanium against steel Fuel 113 448 453 Search in Google Scholar

Petitfrere C., Proust C. (2006). Analysis of ignition risk on mechanical equipment in ATEX. In 2007 4th European Conference on Electrical and Instrumentation Applications in the Petroleum & Chemical Industry (pp. 1–9). IEEE. PetitfrereC. ProustC. 2006 Analysis of ignition risk on mechanical equipment in ATEX In 2007 4th European Conference on Electrical and Instrumentation Applications in the Petroleum & Chemical Industry 1 9 IEEE Search in Google Scholar

Polski Komitet Normalizacyjny (2016). Explosive atmospheres — Part 36: Non-electrical equipment for explosive atmospheres — Basic method and requirements PN-EN ISO 80079-36:2016-07. Warszawa (in Polish). Polski Komitet Normalizacyjny 2016 Explosive atmospheres — Part 36: Non-electrical equipment for explosive atmospheres — Basic method and requirements PN-EN ISO 80079-36:2016-07 Warszawa (in Polish). Search in Google Scholar

Polski Komitet Normalizacyjny (1997). Polish Standard: Single prop mine support. Friction props. Requirements and testing. PN-G-15533:1997. Warszawa (in Polish). Polski Komitet Normalizacyjny 1997 Polish Standard: Single prop mine support. Friction props. Requirements and testing. PN-G-15533:1997 Warszawa (in Polish). Search in Google Scholar

Polski Komitet Normalizacyjny (2004). Polish Standard: Hotrolled steel sections for mining. V sections. Dimensions. PN-H-93441-3:2004. Warszawa (in Polish). Polski Komitet Normalizacyjny 2004 Polish Standard: Hotrolled steel sections for mining. V sections. Dimensions. PN-H-93441-3:2004 Warszawa (in Polish). Search in Google Scholar

Pacześniowski K., Pytlik A. (2008). Methodology of dynamic load capacity determination of frictional joints applied in mining support. Prace Naukowe GIG. Górnictwo i Środowisko. Główny Instytut Górnictwa, 63–71 (in Polish). PacześniowskiK. PytlikA. 2008 Methodology of dynamic load capacity determination of frictional joints applied in mining support Prace Naukowe GIG. Górnictwo i Środowisko Główny Instytut Górnictwa 63 71 (in Polish). Search in Google Scholar

Prostański D. (2018). Development of research work in the air-water spraying area for reduction of methane and coal dust explosion hazard as well as for dust control in the Polish mining industry. In IOP Conference Series: Materials Science and Engineering (Vol. 427, No. 1, p. 012026). IOP Publishing. ProstańskiD. 2018 Development of research work in the air-water spraying area for reduction of methane and coal dust explosion hazard as well as for dust control in the Polish mining industry In IOP Conference Series: Materials Science and Engineering 427 2 012026 IOP Publishing Search in Google Scholar

Pytlik A. (2019a). Tests of steel arch and rock bolt support resistance to static and dynamic loading induced by suspended monorail transportation. Studia Geotechnica et Mechanica 41 (2), 81–92. PytlikA. 2019a Tests of steel arch and rock bolt support resistance to static and dynamic loading induced by suspended monorail transportation Studia Geotechnica et Mechanica 41 2 81 92 Search in Google Scholar

Pytlik A. (2019b). Comparative bench testing of steel arch support systems with and without rock bolt reinforcements. Archives of Mining Sciences, 64. PytlikA. 2019b Comparative bench testing of steel arch support systems with and without rock bolt reinforcements Archives of Mining Sciences 64 Search in Google Scholar

Pytlik A. (2020). Experimental Studies of Static and Dynamic Steel Arch Support Load Capacity and Sliding Joint Temperature Parameters During Yielding. Archives of Mining Sciences, 469–491. PytlikA. 2020 Experimental Studies of Static and Dynamic Steel Arch Support Load Capacity and Sliding Joint Temperature Parameters During Yielding Archives of Mining Sciences 469 491 Search in Google Scholar

Pytlik A., Tokarczyk J., Frąc W., Michalak D. (2021). Explosive atmosphere ignition source identification during mining plant suspended monorail braking unit operation. ACTA MONTANISTICA SLOVACA, 26(2), 338–351. PytlikA. TokarczykJ. FrącW. MichalakD. 2021 Explosive atmosphere ignition source identification during mining plant suspended monorail braking unit operation ACTA MONTANISTICA SLOVACA 26 2 338 351 Search in Google Scholar

Rogers, R. L. (2003). Development of European standards: non-electrical equipment for use in explosive atmospheres. In INSTITUTION OF CHEMICAL ENGINEERS SYMPOSIUM SERIES (Vol. 149, pp. 461–476). Institution of Chemical Engineers; 1999. RogersR. L. 2003 Development of European standards: non-electrical equipment for use in explosive atmospheres In INSTITUTION OF CHEMICAL ENGINEERS SYMPOSIUM SERIES 149 461 476 Institution of Chemical Engineers 1999 Search in Google Scholar

Shao X. Q., Ma X. M. (2012). The design of Coal mine construction safety monitoring system. In Applied Mechanics and Materials (Vol. 174, pp. 3459–3462). Trans Tech Publications Ltd. ShaoX. Q. MaX. M. 2012 The design of Coal mine construction safety monitoring system In Applied Mechanics and Materials 174 3459 3462 Trans Tech Publications Ltd. Search in Google Scholar

Shepherd J., Rixon L. K., Griffiths L. (1981). Outbursts and geological structures in coal mines: a review. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 18, No. 4, Pergamon, 267–283. ShepherdJ. RixonL. K. GriffithsL. 1981 Outbursts and geological structures in coal mines: a review In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 18 4 Pergamon 267 283 Search in Google Scholar

Song W., Cheng J., Wang W., Qin Y., Wang Z., Borowski M., Wang Y., Tukkaraja, P. (2021). Underground mine gas explosion accidents and prevention techniques–an overview. Archives of Mining Sciences, 66(2), 297–312. SongW. ChengJ. WangW. QinY. WangZ. BorowskiM. WangY. TukkarajaP. 2021 Underground mine gas explosion accidents and prevention techniques–an overview Archives of Mining Sciences 66 2 297 312 Search in Google Scholar

Takla G., Vavrusak Z. (1999). Coal Seam Gas Emissions from Ostrava—Karvina Collieries in the Czech Republic during Mining and after Mines Closure. In Coalbed Methane: Scientific, Environmental and Economic Evaluation, Springer Dordrecht, 395–409. TaklaG. VavrusakZ. 1999 Coal Seam Gas Emissions from Ostrava—Karvina Collieries in the Czech Republic during Mining and after Mines Closure In Coalbed Methane: Scientific, Environmental and Economic Evaluation Springer Dordrecht 395 409 Search in Google Scholar

Thurnherr P., Schwarz G., Oberhem H. (2007). Non-Electrical Equipment for Potentially Explosive Atmospheres. In 2007 IEEE Petroleum and Chemical Industry Technical Conference (pp. 1–9). IEEE. ThurnherrP. SchwarzG. OberhemH. 2007 Non-Electrical Equipment for Potentially Explosive Atmospheres In 2007 IEEE Petroleum and Chemical Industry Technical Conference 1 9 IEEE Search in Google Scholar

Trenczek S. (2015). Methane ignitions and explosions in the context of the initials related to technical and natural hazards. Przegląd Górniczy, 71(2), 87–92 (in Polish). TrenczekS. 2015 Methane ignitions and explosions in the context of the initials related to technical and natural hazards Przegląd Górniczy 71 2 87 92 (in Polish). Search in Google Scholar

Yuan L. (2016). Control of coal and gas outbursts in Huainan mines in China: A review. Journal of Rock Mechanics and Geotechnical Engineering, 8(4), 559–567. YuanL. 2016 Control of coal and gas outbursts in Huainan mines in China: A review Journal of Rock Mechanics and Geotechnical Engineering 8 4 559 567 Search in Google Scholar

Zhang L., Wang H., Chen C., Wang P., Xu L. (2021). Experimental study to assess the explosion hazard of CH4 / coal dust mixtures induced by high-temperature source surface. Process Safety and Environmental Protection, 154, 60–71. ZhangL. WangH. ChenC. WangP. XuL. 2021 Experimental study to assess the explosion hazard of CH4 / coal dust mixtures induced by high-temperature source surface Process Safety and Environmental Protection 154 60 71 Search in Google Scholar

eISSN:
2083-831X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics