Bearing Capacity Evaluation of Shallow Foundations on Stabilized Layered Soil using ABAQUS
and
Dec 25, 2022
About this article
Article Category: Original Study
Published Online: Dec 25, 2022
Page range: 55 - 71
Received: Mar 14, 2022
Accepted: Nov 15, 2022
DOI: https://doi.org/10.2478/sgem-2022-0026
Keywords
© 2023 Avinash Bhardwaj et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

Figure 25

Figure 26

Figure 27

Figure 28

Figure 29

Chemical properties of molasses used_
Color | Black |
Brix | 83.2 |
pH (1:1 at 20°C) | 5.6 |
Specific gravity | 1.39 |
Viscosity | 17,500 mPas |
Moisture | 21.76% |
Total sugar | 47.83% |
Invert sugar | 10.20% |
Sulfated sugar | 15.50% |
Ca | 1.63% |
Mineral composition of clayey soil_
Oxygen, O | 45.4 |
Silicon, Si | 18.5 |
Aluminum, Al | 8.69 |
Carbon, C | 10.9 |
Iron, Fe | 1.42 |
Potassium, K | 1.86 |
Magnesium, Mg | 2.30 |
Titanium, Ti | 2.51 |
Chemical properties of WFS_
SiO2 | 84.90 |
Al2O3 | 5.21 |
Fe2O3 | 3.32 |
CaO | 0.58 |
MgO | 0.67 |
SO3 | 0.29 |
MnO | 0.08 |
TiO2 | 0.19 |
K2O | 0.97 |
P2O5 | 0.05 |
Na2O | 0.50 |
¬Loss of ignition | 2.87 |
Comparison of observed bearing capacity values with Vesic (1973), Hansen (1970), and Terzaghi (1943) calculations_
Sand | L/B=1 | L/B=2 | L/B=1 | L/B=2 | L/B=1 | L/B=2 | L/B=1 | L/B=2 |
148 | 133 | 138 | 121.78 | 113.27 | 106.11 | 94.25 | 97.67 |
Geotechnical properties of WFS_
Specific gravity | 2.64 |
Optimum moisture content | 8.20% |
Maximum dry density | 1.59 g/cc |
Designation and details of type of soil in upper and lower layers under both types of footings in two-layered soils_
Case 1 | Upper layer | Unstabilized clay |
Lower layer | Medium-dense sand | |
Case 2 | Upper layer | Stabilized clay (C:M:: 90:10) |
Lower layer | Medium-dense sand | |
Case 3 | Upper layer | Stabilized clay (C:WFS:: 80:20) |
Lower layer | Medium-dense sand | |
Case 4 | Upper layer | Stabilized clay (C: L:: 91:9) |
Lower layer | Medium-dense sand | |
Case 5 | Upper layer | Stabilized clay (C:M:WFS:: 80:10:10) |
Lower layer | Medium-dense sand | |
Case 6 | Upper layer | Stabilized clay (C:M:L:: 84:10:6) |
Lower layer | Medium-dense sand | |
Case 7 | Upper layer | Stabilized clay (C:WFS:L:: 74:20:6) |
Lower layer | Medium-dense sand | |
Case 8 | Upper layer | Stabilized clay (C:M:WFS:L:: 67:10:20:3) |
Lower layer | Medium-dense sand |
Chemical composition of lime used_
SiO2 | 2.1 |
Al2O3 | 1.3 |
Fe2O3 | 1.2 |
CaO | 82.8 |
MgO | 0.3 |
SO3 | 0.4 |
Na2O | 0.4 |
K2O | - |
TiO2 | - |
C | 2.2 |
CaCO3 | 4.3 |
Impurities | 5.0 |
¬Loss of ignition at 800°C | - |
Geotechnical properties of clayey soil_
Soil type | CH |
Liquid limit | 55% |
Plastic limit | 20% |
Plasticity index | 35% |
Specific gravity | 2.6 |
Differential free swell index | 35% |
Optimum moisture content | 16.5% |
Material properties of unstabilized/stabilized clayey soil and sandy soil (Mohr–Coulomb model) [23]_
Mass density ( |
1710 | 1790 | 1781 | 1606 | 1840 | 1750 | 1730 | 1820 | 1615 |
Modulus of elasticity (E) (MPa) | 3.2 | 5.3 | 7.2 | 9.6 | 10.3 | 14.7 | 16.2 | 18.5 | 32.3 |
Poisson ratio (ν) | 0.3 | 0.3 | 0.3 | 0.32 | 0.33 | 0.34 | 0.36 | 0.38 | 0.3 |
Angle of internal friction (ϕ) | 14.86 | 17.06 | 19.11 | 21.43 | 23.62 | 25.64 | 27.85 | 29.68 | 35 |
Cohesion (c) (kPa) | 21.77 | 19.92 | 19.08 | 17.61 | 16.43 | 15.59 | 14.78 | 13.89 | 0.1 |