Open Access

Rarity of polyploidy in Conifer: a genetic conundrum

  
Jul 11, 2025

Cite
Download Cover

Adams RP (2014) Junipers of the World: The Genus Juniperus. 4th ed. Trafford Publishing, Bloomington, Indiana. Search in Google Scholar

Adams RP, Johnson ST, Rushforth J, Farhat P, Valentine N, Siljak-Yakovlev S (2019) The origin of Juniperus xfitzeriana, an allo-tetraploid hybrid of J. chinensis x J. sabina. Phytologia 101:164-174. Search in Google Scholar

Adams RP, Johnson ST, Anderson J, Rushforth K, Valentin N, Siljak-Yakovlev S (2020) Nuclear and chloroplast DNA reveal diverse origins and mis-identification of Juniperus chinensis cultivar from Windsor Gardens, UK. Part 2 0f 3. Phytologia 102(3). https://doi.org/10.1111/jse.12751 Search in Google Scholar

Ahuja MR (2001) Recent advances in molecular genetics of forest trees. Euphytica 121:173-195 Search in Google Scholar

Ahuja MR (2005) Polyploidy in gymnosperms: Revisited. Silvae Genet 54:59-69. https://doi.org/10.1515/sg-2005-0010 Search in Google Scholar

Ahuja M R (2009) Genetic constitution and diversity in four narrow endemic redwoods from the family Cupressaceae. Euphytica 165:5-19. https://doi.org/10.1007/s10681-008-9813-3 Search in Google Scholar

Ahuja MR (2022) Origin and genetic nature of polyploidy in paleoendemic coast redwood (Sequoia sempervirens (D. Don) Endl.). Silvae Genet 71:54-64. https://doi.org/10.2478/sg-2022-0007 Search in Google Scholar

Ahuja MR, Neale DB (2002) Origins of polyploidy in coast redwood (Sequoia sempervirens (D. Don) Endl.) and relationship of coast redwood to other genera of Taxodiaceae. Silvae Genet 51: 93-100. https://doi.org/10.2478/sg-2022-0007 Search in Google Scholar

Ahuja MR, Neale DB (2005) Evolution of genome size in conifers. Silvae Genet 54:126-137 https://doi.org/10.1515/sg-2005-0020 Search in Google Scholar

Alabrudzinska M, Skoneczny M, Skoneczna A (2011) Diploid-specific genome stability genes on S. cerevisiae: genomic screen reveals haploidization as an escape from persisting DNA rearrangement stress. PLoS ONE 6: e21124. https://doi.org/10.1371/journal.pone.0021124 Search in Google Scholar

Allnutt TR, Newton AC, Lara A, Premoli A, Armesto JJ, Vergara R, Gardner M (1999) Genetic variation in Fitzroya cupressoides (alerce), a threatened South American conifer. Mol Ecol 8:875-987. https://doi.org/10.1046/j.1365-294x.1999.00650.x Search in Google Scholar

Andersson E (1947) A case of asyndesis in Picea abies. Hereditas 33:301-347. https://doi.org/10.1111/j.1601-5223.1947.tb02807.x Search in Google Scholar

Barker MS, Husband BC, Pires JC (2016) Spreading wings and flying high: the evolutionary importance of polyploidy after a century of study. Am J Bot 103:1139-1145. https://doi.org/10.3732/ajb.1600272 Search in Google Scholar

Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distribution of duplicate genes. Plant Cell 16:1667-1678. https://doi.org/10.1105/tpc.021345 Search in Google Scholar

Borzan Z, Papes D (1978) Karyotype analysis in Pinus: A contribution to the standardization of the karyotype analysis and review of some applied techniques. Silvae Genet 27:144-150. Search in Google Scholar

Breidenbach N, Gailing O, Krutovsky KV (2020a) Genetic structure of cost redwood (Sequoia sempervirens [D. Don] Endl.) populations in and outside of the distribution range natural range based on nuclear and chloroplast microsatellite markers. PLoS ONE 15 (12): e0243556. https://doi.org/10.1371/journal.pone.0243556 Search in Google Scholar

Breidenbach N, Sharov V, Gailing O, Krutovsky KV (2020b) De novo transcriptome assembly of cold stressed clones of the hexaploidy Sequoia sempervirens (D. Don) Engl. Scientific Data 7:239. https://doi.org/10.1038/s41597-020-00576-1 Search in Google Scholar

Buchholz JT (1918) Suspensor and early embryo of Pinus. Botanical Gazette 66:195-228. https://doi.org/10.1086/332331 Search in Google Scholar

Cai L, Xi Z, Amorim AM, Sugumaran M, Rest JS, Liu L, Davis, CC (2019) Widespread ancient whole-genome-duplications in Malpighiales coincide with Eocene global climate upheaval. New Phytologist 221:565-575. https://doi.org/10.1111/nph.15357 Search in Google Scholar

Casola C, Koralewski TE (2018) Pinaceae elevated rates of gene turnover that are robust to incomplete gene annotation. Plant Journal 95:862-876. https://doi.org/10.1111/tpj.13994 Search in Google Scholar

Chiba S (1951) Triploid and tetraploids of sugi (Cryptomeria japonica D. Don) selected in forest nursery Bull Govt For Station 49: 99-108. https://doi.org/10.1270/jsbbs1951.1.43 Search in Google Scholar

Chiba S, Watanabe M (1952) Tetraploid of Larix kaempferi in the nurseries. Bull Govt For Exp Station, Tokyo, Japan 57:187-199. https://doi.org/10.2524/jtappij.9.290 Search in Google Scholar

Christiansen H (1950) A tetraploid of Larix decidua Miller. Det Kgl Danske Vidensk Selsk 18:1-9. Search in Google Scholar

Critchfield WB (1975) Interspecific hybridization in Pinus: a summary review. In: Fowler D P, Yeatman CY (eds) Symposium on interspecific and interprovenance hybridization in forest trees. Proc 14th Meeting, Canada Tree Improve Association, Part II. Pp. 99-105. Search in Google Scholar

Critchfield WB (1967) Crossability and relationship of the closed-cone pines. Silvae Genet 16:89-97. Search in Google Scholar

Darlington CD (1937) Recent Advances in Cytology. J. & A. Churchill, Ltd. London. https://doi.org/10.5962/bhl.title.6597 Search in Google Scholar

De La Torre AR, Briol I, Bousquet J, Ingvarson PK, Jansson S, Jones SJM, et al. (2014) Insights into conifer giga-genomes. Plant Physiology 166:1724-1732. https://doi.org/10.1104/pp.114.248708 Search in Google Scholar

De Luc A, Adams RA, Zhong M (1999) Using random amplification of polymorphic DNA for a taxonomic reevaluation of Pfitzer Juniperus. HortScience 34:1123-1125. https://doi.org/10.21273/hortsci.34.6.1123 Search in Google Scholar

Doudrick RL, Heslop-Harrison JS, Nelson CD, Schmidt T, Nance WL Schwarzacher T (1995) Karyotype of slash pine (Pinus elliottii var. elliottii) using patterns of fluorescence in situ hybridization and fluorochrome banding. J. Heredity 86:289-296. https://doi.org/10.1093/oxfordjournals.jhered.a111583 Search in Google Scholar

Douhonikoff V, Dodd RS (2011) Lineage divergence in coast redwood (Sequoia sempervirens), detected by a set of nuclear microsatellite loci. Am Midl. Nat. 165:22-37. https://doi.org/10.1674/0003-0031-165.1.22 Search in Google Scholar

Du Y-P, Bi Y, Zhang MF, Yang F-P, Jia GX, Zhang XH (2017) Genome size diversity in Lilium (Liliaceae) is correlated with karyotype and environment traits. Front Plant Sci. 8:1303, doi:10,3389/pls.2017.01303. https://doi.org/10.3389/fpls.2017.01303 Search in Google Scholar

Drewry A (1988) The G-banded karyotype of Pinus resinosa Ait. Silvae Genet 37:218-221. Search in Google Scholar

Elguindy MM, Kopp F, Goodarzi M, Rehfeld F, Thomas A, Chang, TC, et al. (2019) PUMILIO, but not RBMX, binding is required for regulation of genomic stability by noncoding RNA NORAD. eLife 8:e48625. https://doi.org/10.7554/elife.48625 Search in Google Scholar

Farhat P, Hidalgo O, Robert T, Siljak-Yakovlev S, Leitch IJ, Adams RP, et al. (2019) Polyploidy in conifers genus Juniperus: An unexpected high rate. Front. Plant Sci. 10:676. Doi: 10.3389/fpls. 2019.00676. https://doi.org/10.3389/fpls.2019.00676 Search in Google Scholar

Farhat P, Siljak-Yakovlev S, Valentine N, Fabregat C, Lopez-Udias S, Salazar-Mendiaz C, et al. (2020) Gene flow between wild diploid and tetraploid junipers – two contrasting evolutionary pathways in two Juniperus populations. BMC Evolutionary Biology 20:148. Doi:org/10.1186/s12862-0202-01688-3. https://doi.org/10.1186/s12862-020-01688-3 Search in Google Scholar

Farhat P, Siljak-Yakovlev S, Hidalgo O, Rushforth K, Bartel JA, Valentine N, et al. (2022) Polyploidy in Cupressaceous: discovery of a new naturally occurring tetraploid, Xanthcyparis vietnamensis. Journal of Systematics and Evolution 60:824-834. https://doi.org/10.1111/jse.12751 Search in Google Scholar

Farhat P, Siljak-Yakovlev S, Takvorian N, Kharrat MBD, Robert T. (2023) Allopolyploidy- an underestimated driver in Juniperus evolution. Life 13:14n79. https://doi.org/10.3390/life13071479 Search in Google Scholar

Farjon A (2018) Conifers of the world. Kew Bulletin 73:8. Doi 10.1007/S122250018-9738-5 https://doi.org/10.1007/s12225-018-9738-5 Search in Google Scholar

Fox DT, Soltis DE, Soltis PS, Ashman TL, Vande Peer (2020) Polyploidy: a biological force from cells to ecosystems. Trends in Cell Biology 30:688-694. https://doi.org/10.1016/j.tcb.2020.06.006 Search in Google Scholar

Fraver S, Gonzalez ME, Silla F, Lara A (1999) Composition and structure of remnant Fitzroya cupressoides forests of southern Chile’s Central Depression. J Torr Bot Soc 126:49-57. https://doi.org/10.2307/2997254 Search in Google Scholar

Gadek PA, Alpers DL, Heselwood MM, Quinn CJ (2000) Relationship within Cupressaceae sensu lato: A combined morphological and molecular approach. Am J Bot 87:1044-1057. https://doi.org/10.2307/2657004 Search in Google Scholar

Hair JB (1968) The chromosomes of the Cupressaceae. I. Tetraclineae and Actinostrobeae (Callitroideae). New Zealand J Bot 6:277-284. https://doi.org/10.1080/0028825x.1968.10428813 Search in Google Scholar

Hall MT, Mukherjee A, Crowley WR (1973) Chromosome counts in cultivated junipers. Bot Gaz 140:364-370. https://doi.org/10.5962/p.184526 Search in Google Scholar

Hamrick R, Godt MJW, Sherman-Broyles SL (1992) factors influencing level of genetic 5:95-124. in woody plant species, New Forests https://doi.org/10.1007/bf00120641 Search in Google Scholar

Hida M (1957) The comparative study of Taxodiaceae from the standpoint of development of cone scales. Bot Mag Tokyo70:45-51. https://doi.org/10.15281/jplantres1887.70.44 Search in Google Scholar

Hirayoshi I, Nakamura Y (1943) Chromosome number of Sequoia sempervirens. Bot Zool 2:73-75. Search in Google Scholar

Hizume M, Shibata F, Matsusaki Y, Garajova Z (2002) Chromosome identification and comparative karyotype analysis of four Pinus species. Theor Appl Genet 105:491-497. https://doi.org/10.1007/s00122-002-0975-4 Search in Google Scholar

Hizume M, Kaneko K, Miyake T (2014) A method for preparation of meiotic chromosomes of conifers and its applicatios. Chromosome Botany 9:83-88. https://doi.org/10.3199/iscb.9.83 Search in Google Scholar

Houminer N, Riov J, Moshelion M, Osem Y, David-Scheartz R (2022) Comparison of morphological and physiological traits between Pinus brutia, Pinus halepensis, and their vigorous F1 hybrids.Forests 13:1477. https.//doi.org/10.3390/f13091477. Search in Google Scholar

Ibarra-Laclette E, Lyons E, Hernandez-Guzman G, Pérez-Torres CA, Carretero-Paulet L, Chang TH, et al (2013) Architecture and evolution of a minute plant genome. Nature 498: 94-98. https://doi.org/10.1038/nature12132 Search in Google Scholar

Illies Z (1951) Colchicineversuche an Larix decidua Miller und Picea abies (L.) Karst. Z. Forstgenetik u Forstpflanzenzüchtung 1: 36-39. Search in Google Scholar

Illies Z (1953) Keimlingsabnormalitäten bei Picea abies (l.) Karst. Z. Forstgenetik u. Forstpflanzenzüchtung 2:28-32. Search in Google Scholar

Illies Z (1957) Cytologische Beobachtungen an einer 7 jährigen CO Generation von Lärche. Silvae Genet. 6:151-152. Search in Google Scholar

Illies Z (1958) Polysomatie im Merristem von Einzelbaumabsaaten bei Picea abies. Silvae Genet. 7:94-97. https://doi.org/10.1007/bf00603294 Search in Google Scholar

Illies Z (1966) The development of aneuploidy in somatic cells of experimentally produced triploid larches. Heredity 21:379-385. https://doi.org/10.1038/hdy.1966.39 Search in Google Scholar

Illies Z (1969) Two aneuploid generations of larch hybrids derived from colchicine induced Larix sp. Proc. Second World Consulation on Forest Tree Breeding, 5p. Search in Google Scholar

Jagel A, Dörken V (2014) Morphology and morphogenesis of seed cones of the Cupressaceae- Part I: Cunnighamioideae, Athrotaxooideae, Tawanioidaea, Sequoiodeae, Taxodioiodeae. Bull Cco 3:117-136. https://doi.org/10.1016/j.flora.2017.03.008 Search in Google Scholar

Jensen H, Levan A (1941) Colchicine-induced tetraploidy in Sequoiadendron giganteum. Hereditas 27:220-224. Search in Google Scholar

Johnsson H (1975) Observations on induced polyploidy in some conifers (Pinus sylvestris, P. contorta, Picea abies, and Larix sibirica. Silvae Genet 24:62-68. Search in Google Scholar

Jiao Y, Wickett N, Ayyampalayam S et al (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97-100. https://doi.org/10.1038/nature09916 Search in Google Scholar

Keillander CL (1950) Polyploidy in Picea abies. Hereditas 36:513-516. Search in Google Scholar

Khanduja JS, Calvo IA, Joh RI, Till IT, Motamedi M (2016) Nuclear noncoding RNAs and genome stability. Molecular Cell 63:7-20. https://doi.org/10.1016/j.molcel.2016.06.011 Search in Google Scholar

Khoshoo TN (1959) Polyploidy in gymnosperms. Evolution 13:24-39. Search in Google Scholar

Khoshoo TN (1961) Chromosome numbers in gymnosperms. Silvae Genet 10:1-9. https://doi.org/10.1111/j.1558-5646.1959.tb02991.x Search in Google Scholar

Kim CS, Lee SK (1973) Colchitriploid Pinus banksiana. Inst. For. Gen Res Rep No 10 Suwon Search in Google Scholar

Kremer A, Cassoli M, Barreneche T et al (2007) Fagaceae trees. In: Kole C (Ed) Genome mapping and molecular breeding of plants, Vol. 7. Springer Verlag, Berlin, pp. 162-187. https://doi.org/10.1007/978-3-540-34541-1_5 Search in Google Scholar

Krutovskii KV, Politov DV (1995) Allozyme evidence for polyzygotic polyembryony in Siberian stone pine (Pinus sibirica Du Tour). Theoretical and Applied Genetics 90:811-818. https://doi.org/10.1007/bf00222016 Search in Google Scholar

Ku H.-M, Vision T, Liu J, Tanksley SD (2000) Comparing sequenced segments of the tomato and Arabidopsis genomes: Large-scale duplication followed by selective gene loss creates a network of synteny. Proc Natl Acad Sci USA 97:9121-9126. https://doi.org/10.1073/pnas.160271297 Search in Google Scholar

Kumaran R, Yang S-Y, Leu J-Y (2013) Characterization of chromosome stability in diploid, polyploidy and hybrid yeast cells. PLoS ONE 8:e68094. https://doi.org/10.1371/journal.pone.0068094 Search in Google Scholar

Kusumi J, Tsumura Y, Yoshimaru H, Tachida H (2000) Phylogenetic relationship in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chlL gene, trnL-trnF IGS region and trnL intron sequences. Am J Bot 87:1480-1488. https://doi.org/10.2307/2656874 Search in Google Scholar

Landis JB, Soltis DE, Li Z, Marx MS, Tank DC, et. al. (2018) Impact of whole genome duplication events on diversification in angiosperms. American Journal of Botany 105: 348-363. https://doi.org/10.1002/ajb2.1060 Search in Google Scholar

Lara A, Villalba R (1993) A 3620-year temperature record from Fitzroya cupressoides tree rings in southern South America. Science 260:1104-1106. https://doi.org/10.1126/science.260.5111.1104 Search in Google Scholar

Larsen SC, Westergaard M (1938) Contribution to the cytology of forest trees. I. Triploid hybrids between Larix decidua Miller & L. occidentalis Nutt Jour Genet 36:53-530. https://doi.org/10.1007/bf02982464 Search in Google Scholar

Lee S, Kopp F, Chang T-C, et al. (2016) Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell 164:69-80. https://doi.org/10.1016/j.cell.2015.12.017 Search in Google Scholar

Lehmann R, Kovařík A, Ocalewicz K, Kirtiklis L, Zuccolo A, Tegner JN, Wanzenböck J, Bernatchez L, Lamatsch DK, Symonová R (2021) DNA transposon expansion is associated with genome size increase in mudminnows. Benome Biology 13(10) doi.10. 1093/gbe/evab228. https://doi.org/10.1093/gbe/evab228 Search in Google Scholar

Leitch IJ, Hanson L, Winfield M, Parker J Bennett MD (2001) Nuclear DNA C-values complete familial representation in gymnosperms. Ann Bot 88:843-849. https://doi.org/10.1006/anbo.2001.1521 Search in Google Scholar

Leitch IJ, Beaulieu JM, Cheung K, Hanson L, Lysak MA, Fay MF (2007) Punctuated genome size evolution in Liliaceae. Evol Biol 20:2296-2308. https://doi.org/10.1111/j.1420-9101.2007.01416.x Search in Google Scholar

Libby WJ, Anekonda TS, Kuser JE (1996) The genetic architecture of coast redwood. In: LeBlanc J (ed) Proceedings of the conference on coast redwood forest ecology and management. Humboldt State University, Arcata, California, pp. 147-149. Search in Google Scholar

Lohaus R, Van de Peer Y (2016) Of dups and dinos: evolution of the K/Pg boundary. Current Opinion in Plant Biology 30:62-69. https://doi.org/10.1016/j.pbi.2016.01.006 Search in Google Scholar

Li Z, Baniaga AE, Sessa, EB, Scascitelli M, Graham, SW, Riesenberg, LH, et al. (2015) Early genome duplications in conifers and other seed plants. Sci Adv 2015;1: e1501084. https://doi.org/10.1126/sciadv.1501084 Search in Google Scholar

Liu Y, El-Kassaby Y (2019) Novel insight into plant genome evolution and adaptation as revealed through transposable elements and non-coding RNAs in conifers. Genes 10:228, doi:10.3390/genes10030228. https://doi.org/10.3390/genes10030228 Search in Google Scholar

Lubaretz O, Fuchs J, Ahne R, Meister A, Schubert L (1996) Karyotyping of three Pinaceae species via fluorescent in situ hybridization and computer-aided chromosome analysis. Theor Appl Genet 92:411-416. https://doi.org/10.1007/bf00223687 Search in Google Scholar

Magadum SK, Banerjee U, Murugan P, Gangapur D, Ravikesavan R (2013) Gene duplications a major force in evolution. J Genet 92:155-161. https://doi.org/10.1007/s12041-013-0212-8 Search in Google Scholar

Matsuda K, MIyajima H (1977) On the triploid of Cryptomeria japonica D, Don. Journal of Japanese Forest Society 59:148-150. Search in Google Scholar

Mehra PN, Khoshoo TN (1956) Cytology of conifers, I J Genet 54:165-180. https://doi.org/10.1007/bf02981708 Search in Google Scholar

Mergen F (1958) Natural polyploidy in slash pine. For Sci 4:283-295. https://doi.org/10.1126/science.121.3139.306 Search in Google Scholar

Merino I, Abrahamsson M, Sterck L, Craven-Bartle B, Canovas F, Von Arnold S (2016) Transcript profiling for early stages during embryo development in Scots pine. BMC Plant Biology 16:255. https://doi.org/10.1186/s12870-016-0939-5 Search in Google Scholar

Miller CN (1977) Mesozoic conifers. Bot Rev 43:217-280. https://doi.org/10.1007/bf02860718 Search in Google Scholar

Mirov NT (1967) The Genus Pinus. Ronald Press, New York. https://doi.org/10.1126/science.158.3801.626 Search in Google Scholar

Müntzing A (1933) Hybrid incompatibility and origin of polyploidy. Hereditas 18:33-55. Search in Google Scholar

Nagano K, Matoba H, Yonemura K, Matsuda Y, Murata T, Hoshi Y (2007) Karyo-type analysis of three Juniperus species using fluorescence in situ hybridization (FISH) with two ribosomal RNA genes. Cytologia 72:37-42. https://doi.org/10.1508/cytologia.72.37 Search in Google Scholar

Neale DB, Wheeler, NC (2019) The Conifers: Genomes, Variation and Evolution. Springer Verlag, Switzerland. https://doi.org/10.1007/978-3-319-46807-5_1 Search in Google Scholar

Neale DB, Zimin AV, Zaman S, Scott AD, Shrestha B, Workman RE, et al. (2022) Assembled and annotated 26.5 Gbp coast redwood: a resource for estimating evolutionary adaptive potential and investigating hexaploid origin. G3 Genes Genomes Genetics 12:1-13. https://doi.org/10.1093/g3journal/jkab380 Search in Google Scholar

Nishant KT, Wei W, Mancera E, Argueso JL, Schlattl A, Delhomme N, et al. (2010) The Baker’s yeast diploid genome is remarkably stable in vegetative growth and meiosis. PLoS Genet 6:e1001109. https://doi.org/10.1371/journal.pgen.1001109 Search in Google Scholar

Nishimura S (1960) Chromosome numbers of polyembryonic seedlings of Pinus thunbergii Parl. J Jap For Sci 42:263-264. Search in Google Scholar

Niu S, Li J, Bo W, Yang W, Zuccolo A, Giacomello S, et al (2022) The Chinese genome and methylation unveil key features of conifer genome. Cell 185:204-207. Search in Google Scholar

Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579-584. https://doi.org/10.1016/j.cell.2021.12.006 Search in Google Scholar

O’Hara KL, Cox LE, Nikolaeva S, Bauer JJ, Hedges R (2017) Regeneration dynamics of coast redwood, a sprouting conifer species: a review with implications for management and restoration. Forests 8:144; https://doi.org/10.3390/f8050144 Search in Google Scholar

Ohno S (1970) Evolution by Gene Duplication. Springer Verlag, Berlin. https://doi.org/10.1007/978-3-642-86659-3 Search in Google Scholar

Ohri D (2021a) Polyploidy in Gymnsoperms- a reappraisal. Silvae Genet 70:22-38. https://doi.org/10.2478/sg-2021-0003 Search in Google Scholar

Ohri D (2021b) karyotype evolution in conifers. Feddes Repertorium. https://doi.org/10.1002/fedr.202100014. Search in Google Scholar

Ohri D (2021c) Variation and evolution of genome size in gymnosperms. Silvae Genet 70:156-169. https://doi.org/10.1002/fedr.202100014 Search in Google Scholar

Olson DF, Roy DF, Walters GA (1990) Sequoia sempervirens (D. Don) Endl. Redwood. In: Burns RM, Honkala BH (Technical Coordinators) Silvics of North America:1. Conifers. Agriculture Handbook. U.S. Department of Agriculture. Forest Service, Washington, pp541-551. Search in Google Scholar

Otto SP, Whitton J (2000) Polyploidy incidence and evolution. Annu Rev Genet 34:401-437. https://doi.org/10.1146/annurev.genet.34.1.401 Search in Google Scholar

Panchy N, Lehti-Shiu M, Shiu S-H (2016) Evolution of gene duplication in plants. Plant Physiology 171:2294-2316. https://doi.org/10.1104/pp.16.00523 Search in Google Scholar

Pavy N, Pelgas B, Laroche J, Rigault P, Isabel N, Bousquet J (2012) A spruce gene map infers plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers. BMC Biology 1084. https://doi.org/10.1186/1741-7007-10-84 Search in Google Scholar

Pederick LA (1970) Chromosome relationship between Pinus species. Silvae Genet 19:171-180. Search in Google Scholar

Premoli AC, Kitzberger T, Veblen TT (2000) Conservation genetics of the endangered conifer Fitzroya cupressoides in Chile and Argentina. Conservation Genet 1:57-66. https://doi.org/10.4206/bosque.2000.v21n1-09 Search in Google Scholar

Ramage BS, O’Hara KL, Caldwell BT (2010) The role of fire in the competitive dynamics of coast redwood forests. Ecosphere 1(6):1-18. https://doi.org/10.1890/es10-00134.1 Search in Google Scholar

Rastogi S, Ohri D (2020) Chromosome numbers in gymnosperms: an update. Silvae Genet 69:13-19. https://doi.org/10.2478/sg-2020-0003 Search in Google Scholar

Reams AB, Roth JR (2015) Mechanisms of gene duplication and amplification. Cold Spring Harb Perspect Biol 5:7:a016592. https://doi.org/10.1101/cshperspect.a016592 Search in Google Scholar

Rogers DL (1997 Inheritance of allozymes from seed tissues of the hexaploid gymnosperm, Sequoia sempervirens (D. Don. Endl.) (coast redwood). Heredity 78:166-175. https://doi.org/10.1038/sj.hdy.6881120 Search in Google Scholar

Romo A, Hidalgo O, Boratynski A, Sobierajska K, Jasinska K, Valles J, et al. (2013) Genome size and ploidy levels in highly fragmented habitats: the case of western Mediterranean Juniperus (Cupressaceae) with special emphasis on J. thurifera. Tree Genetics and Genomes 9:587-599. https://doi.org/10.1007/s11295-012-0581-9 Search in Google Scholar

Ruprecht C, Lohaus R, Vaneste K, Mutwil M, Nikoloski Z, Van de Peer Y, et al. (2017) Revisiting ancestral polyploidy in plants. Sci Adv 3:e1603195. https://doi.org/10.1126/sciadv.1603195 Search in Google Scholar

Sax K, Sax HJ (1933) Chromosome numbers and morphology in the conifers. J Arnold Arboretum 14:356-375. https://doi.org/10.5962/bhl.part.9959 Search in Google Scholar

Saylor LC (1972) Karyotype analysis of the genus Pinus - subgroup Pinus. Silvae Genet 21:155-163. Search in Google Scholar

Saylor LC (1983) Karyotype analysis of the genus Pinus - subgroup Strobus. Silvae Genet 32:119-124. https://doi.org/10.1508/cytologia.35.294 Search in Google Scholar

Saylor LC, Simons HA (1970) Karyology of Sequoia sempervirens: karyotype and accessory chromosomes. Cytologia 35:294-303. https://doi.org/10.1508/cytologia.35.294 Search in Google Scholar

Schartl M, Woltering JM, Irisari I, Du K, Kneitz S, Pippel M, et al. (2024) The genomes of all lungfish inform on genomic expansion and tetrapod evolution. Nature 634:96-103. https://doi.org/10.1038/s41586-024-07830-1 Search in Google Scholar

Schubert I, Vu GTH (2016) Genome stability and evolution: attempting a holistic view. Trends in Plant Science 21:749-757. https://doi.org/10.1016/j.tplants.2016.06.003 Search in Google Scholar

Scott AD, Stenz NWM, Ingvarsson PK, Baum DA (2016) Whole genome duplication in coast redwood (Sequoia sempervirens) and its implications for explaining the rarity of polyploidy in conifers. New Phytologist 211:186-193. https://doi.org/10.1111/nph.13930 Search in Google Scholar

Sewell MM, Sherman BK, and Neale DB (1999) A consensus map for loblolly pine (Pinus taeda L.). I. Construction and integration of individual linkage maps from two outbred three-generation pedigrees. Genetics 151:321-330. https://doi.org/10.1093/genetics/151.1.321 Search in Google Scholar

Shibata F, Matsusaki Y, Hizume M (2016) A comparative analysis of multi-probe fluorescence in situ hybridization (FISH) karyotypes in 26 Pinus species (Pinaceae). Cytologia 81:409-421. https://doi.org/10.1508/cytologia.81.409 Search in Google Scholar

Silla F, Fraver S, Lara A, Allnutt TR, Newton A (2002) Regeneration and stand dynamics of Fitzroya cupressoides (Cupressaceae) forests of southern Chile’s central depression. For Ecol Manage 165:213-224. https://doi.org/10.1016/s0378-1127(01)00619-3 Search in Google Scholar

Sillett SC, Kramer RD, Van Pelt R, Carroll AL, Campbbell-Spickler J, Antoine ME (2021) Comparative development of four tallest conifer species. For Ecol Manage 480:118688. https://doi.org/10.1016/j.foreco.2020.118688 Search in Google Scholar

Stebbins GL (1948) The chromosomes and relationship of Metasequoia and Sequoia. Science 108:95-98. https://doi.org/10.1126/science.108.2796.95 Search in Google Scholar

Stebbins GL (1951) Variation and Evolution in Plants. Columbia University Press, New York https://doi.org/10.1126/science.112.2921.764-b Search in Google Scholar

Stull GW, Qu X-J, Parins-Fukuchi C, Yang Y-Y, Yang J-O, Yang Z-Y, et al. (2021) Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms. Nature Plants 7:1015-1025. https://doi.org/10.1038/s41477-021-00964-4 Search in Google Scholar

Takaso T, Tomlinson PB (1992) Seed cone and ovule ontogeny in Metasequoia, Sequoia and Sequoiadendron (Taxodiaceae, Coniferales). Bot J Linn Soc 100:15-37. https://doi.org/10.1111/j.1095-8339.1992.tb00256.x Search in Google Scholar

The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796-815. https://doi.org/10.1038/35048692 Search in Google Scholar

Tredici PD (1999) Redwood burls: immortality underground. Arnoldia 59:14-22. https://doi.org/10.5962/p.251380 Search in Google Scholar

Tuscan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596-1604. Search in Google Scholar

Vallés V, Garnatje T, Robin O, Siljak-Yakovlev S (2015) Molecular cytogenetics studies in western Mediterranean Juniperus (Cupressaceae): a constant model for GC-rich chromosomal regions and rDNA loci with evidence for paleopolyploidy. Tree Genetics and Genomes 11:43 https://doi.org/10.1007/s11295-015-0860-3 Search in Google Scholar

Van de Peer Y, Maere S, Meyer A (2009) The evolutionary significance of ancient genome duplications. Nature Reviews Genetics 10:725-732. https://doi.org/10.1038/nrg2600 Search in Google Scholar

Van de Peer Y, Mizrachi E, Marchal K (2017) The evolutionary significance of polyploidy. Nature Reviews Genetics 18:411-424. https://doi.org/10.1038/nrg.2017.26 Search in Google Scholar

Van de Peer Y, Ashman T-L, Soltis P, Soltis D (2021) Polyploidy: an evolutionary and ecological force in stressful times. Plant Cell 33:11-26. https://doi.org/10.1093/plcell/koaa015 Search in Google Scholar

Vaneste K, Baele G, Maere S, van de Peer Y (2014) Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary. Genome Research 24:1334-1347. https://doi.org/10.1101/gr.168997.113 Search in Google Scholar

Veblen TT, Ashton DH (1982) The regeneration status of Fitzroya cupressoides in the Cordilera Pelada, Chile. Biol Cons 23:141-161. https://doi.org/10.1016/0006-3207(82)90036-2 Search in Google Scholar

Von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell and Organ Culture 69:233-249. https://doi.org/10.1093/jexbot/51.343.249 Search in Google Scholar

Voronova A, Rendon-Anaya M Ingvarsson P, Kalendar R, Rungis, D (2020) Comparative study of pine reference genomes reveal transposable element interconnected gene networks. Genes 11, 2016, https://doi:10.3390/genes11101216. Search in Google Scholar

Wan T, Gong Y, Liu Z, Zhou Y, Dai C, Wang Q (2022) Evolution of complex genome architecture in gymnosperms. GigaScience 11:1-10. https://doi.org/10.1093/gigascience/giac078 Search in Google Scholar

Wang J, Lu N., Yi F, Xiao Y (2020) Identification of transposable elements in conifer and their potential application in breeding. Evolutionary Bioinformatics 16:1-4. https://doi.org/10.1177/1176934320930263 Search in Google Scholar

Wang K, Wang J, Zhu C, Yang L, Ren Y, Ruan J. et al (2021) African lungfish genome sheds light on the vertebrate water-to-land transition. Cell 184:1362-1376. https://doi.org/10.1016/j.cell.2021.01.047 Search in Google Scholar

Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225-249. https://doi.org/10.1007/978-94-011-4221-2_12 Search in Google Scholar

Wendel JF (2015) The wondrous cycles of polyploidy in plants. American Journal of Botany 102:1753-1756. https://doi.org/10.3732/ajb.1500320 Search in Google Scholar

Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nature Rev. Genet. 2:323-341 https://doi.org/10.1038/35072009 Search in Google Scholar

Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Riesenberg LS (2009) The frequency of polyploidy speciation in vascular plants. Proc Natl Acad Sci USA 106:13875-13879. https://doi.org/10.1073/pnas.0811575106 Search in Google Scholar

Wu S, Han B, Jiao Y (2020) Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms. Molecular Plant 13:59-71. https://doi.org/10.1016/j.molp.2019.10.012 Search in Google Scholar

Yang Z-Y, Ran J-H, Wang Z-Q (2012) Three genome-based phylogeny of Cupressaceae sI.: further evidence for the evolution of gymnosperms and southern hemisphere biography. Molecular Phylogenetics and Evolution 64:452-470. https://doi.org/10.1016/j.ympev.2012.05.004 Search in Google Scholar

Yi F, Ling J, Xiao Y, Zhang H, Ouyang F, Wang J (2018). ConTEdb: a comprehensive database of transposable elements in conifers. https://doi.org/10.1093/database/bay131 Search in Google Scholar

Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292-298. https://doi.org/10.1016/s0169-5347(03)00033-8 Search in Google Scholar

Zhang L, Wu S, Chang X, Wang X, Zhao Y, Xia Y, et al. (2020) The ancient wave of polyploidization events in flowering plants and there facilitated adaptation to environmental stress. Plant Cell Environ 43:2847-2856. https://doi.org/10.1111/pce.13898 Search in Google Scholar

Zhang R-G, Liu H, Shang, H-Y, Shu H, Liu D-T, Yang H, et al. (2024) Convergent patterns of karyotype evolution underlying karyotype uniformity in conifers. Advanced Science, 2411098 (1-12). https://doi.org/10.1002/advs.202411098 Search in Google Scholar

Zinnai L (1952) Tetraploid plants in Japanese red pine (Pinus densiflora Sieb. Et Zucc.) discovered in transplant beds. J Jap For Soc 34:185-187. Search in Google Scholar

Zinnai L (1953) The morphological characters and the fertility of the pollen of a tetraploid Japanese red pine induced by the colchicines method. J Jap For Soc 35:245-248. Search in Google Scholar

Zonneveld BJM (2012) Conifer genome size of 172 species, covering 64 of 67 genera, range from 8 to 72 picogram. Nordic Journal of Botany 30:490-502. https://doi.org/10.1111/j.1756-1051.2012.01516.x Search in Google Scholar

Language:
English
Publication timeframe:
1 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Genetics, Biotechnology, Plant Science