[
Adams RP (2014) Junipers of the World: The Genus Juniperus. 4th ed. Trafford Publishing, Bloomington, Indiana.
]Search in Google Scholar
[
Adams RP, Johnson ST, Rushforth J, Farhat P, Valentine N, Siljak-Yakovlev S (2019) The origin of Juniperus xfitzeriana, an allo-tetraploid hybrid of J. chinensis x J. sabina. Phytologia 101:164-174.
]Search in Google Scholar
[
Adams RP, Johnson ST, Anderson J, Rushforth K, Valentin N, Siljak-Yakovlev S (2020) Nuclear and chloroplast DNA reveal diverse origins and mis-identification of Juniperus chinensis cultivar from Windsor Gardens, UK. Part 2 0f 3. Phytologia 102(3). https://doi.org/10.1111/jse.12751
]Search in Google Scholar
[
Ahuja MR (2001) Recent advances in molecular genetics of forest trees. Euphytica 121:173-195
]Search in Google Scholar
[
Ahuja MR (2005) Polyploidy in gymnosperms: Revisited. Silvae Genet 54:59-69. https://doi.org/10.1515/sg-2005-0010
]Search in Google Scholar
[
Ahuja M R (2009) Genetic constitution and diversity in four narrow endemic redwoods from the family Cupressaceae. Euphytica 165:5-19. https://doi.org/10.1007/s10681-008-9813-3
]Search in Google Scholar
[
Ahuja MR (2022) Origin and genetic nature of polyploidy in paleoendemic coast redwood (Sequoia sempervirens (D. Don) Endl.). Silvae Genet 71:54-64. https://doi.org/10.2478/sg-2022-0007
]Search in Google Scholar
[
Ahuja MR, Neale DB (2002) Origins of polyploidy in coast redwood (Sequoia sempervirens (D. Don) Endl.) and relationship of coast redwood to other genera of Taxodiaceae. Silvae Genet 51: 93-100. https://doi.org/10.2478/sg-2022-0007
]Search in Google Scholar
[
Ahuja MR, Neale DB (2005) Evolution of genome size in conifers. Silvae Genet 54:126-137 https://doi.org/10.1515/sg-2005-0020
]Search in Google Scholar
[
Alabrudzinska M, Skoneczny M, Skoneczna A (2011) Diploid-specific genome stability genes on S. cerevisiae: genomic screen reveals haploidization as an escape from persisting DNA rearrangement stress. PLoS ONE 6: e21124. https://doi.org/10.1371/journal.pone.0021124
]Search in Google Scholar
[
Allnutt TR, Newton AC, Lara A, Premoli A, Armesto JJ, Vergara R, Gardner M (1999) Genetic variation in Fitzroya cupressoides (alerce), a threatened South American conifer. Mol Ecol 8:875-987. https://doi.org/10.1046/j.1365-294x.1999.00650.x
]Search in Google Scholar
[
Andersson E (1947) A case of asyndesis in Picea abies. Hereditas 33:301-347. https://doi.org/10.1111/j.1601-5223.1947.tb02807.x
]Search in Google Scholar
[
Barker MS, Husband BC, Pires JC (2016) Spreading wings and flying high: the evolutionary importance of polyploidy after a century of study. Am J Bot 103:1139-1145. https://doi.org/10.3732/ajb.1600272
]Search in Google Scholar
[
Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distribution of duplicate genes. Plant Cell 16:1667-1678. https://doi.org/10.1105/tpc.021345
]Search in Google Scholar
[
Borzan Z, Papes D (1978) Karyotype analysis in Pinus: A contribution to the standardization of the karyotype analysis and review of some applied techniques. Silvae Genet 27:144-150.
]Search in Google Scholar
[
Breidenbach N, Gailing O, Krutovsky KV (2020a) Genetic structure of cost redwood (Sequoia sempervirens [D. Don] Endl.) populations in and outside of the distribution range natural range based on nuclear and chloroplast microsatellite markers. PLoS ONE 15 (12): e0243556. https://doi.org/10.1371/journal.pone.0243556
]Search in Google Scholar
[
Breidenbach N, Sharov V, Gailing O, Krutovsky KV (2020b) De novo transcriptome assembly of cold stressed clones of the hexaploidy Sequoia sempervirens (D. Don) Engl. Scientific Data 7:239. https://doi.org/10.1038/s41597-020-00576-1
]Search in Google Scholar
[
Buchholz JT (1918) Suspensor and early embryo of Pinus. Botanical Gazette 66:195-228. https://doi.org/10.1086/332331
]Search in Google Scholar
[
Cai L, Xi Z, Amorim AM, Sugumaran M, Rest JS, Liu L, Davis, CC (2019) Widespread ancient whole-genome-duplications in Malpighiales coincide with Eocene global climate upheaval. New Phytologist 221:565-575. https://doi.org/10.1111/nph.15357
]Search in Google Scholar
[
Casola C, Koralewski TE (2018) Pinaceae elevated rates of gene turnover that are robust to incomplete gene annotation. Plant Journal 95:862-876. https://doi.org/10.1111/tpj.13994
]Search in Google Scholar
[
Chiba S (1951) Triploid and tetraploids of sugi (Cryptomeria japonica D. Don) selected in forest nursery Bull Govt For Station 49: 99-108. https://doi.org/10.1270/jsbbs1951.1.43
]Search in Google Scholar
[
Chiba S, Watanabe M (1952) Tetraploid of Larix kaempferi in the nurseries. Bull Govt For Exp Station, Tokyo, Japan 57:187-199. https://doi.org/10.2524/jtappij.9.290
]Search in Google Scholar
[
Christiansen H (1950) A tetraploid of Larix decidua Miller. Det Kgl Danske Vidensk Selsk 18:1-9.
]Search in Google Scholar
[
Critchfield WB (1975) Interspecific hybridization in Pinus: a summary review. In: Fowler D P, Yeatman CY (eds) Symposium on interspecific and interprovenance hybridization in forest trees. Proc 14th Meeting, Canada Tree Improve Association, Part II. Pp. 99-105.
]Search in Google Scholar
[
Critchfield WB (1967) Crossability and relationship of the closed-cone pines. Silvae Genet 16:89-97.
]Search in Google Scholar
[
Darlington CD (1937) Recent Advances in Cytology. J. & A. Churchill, Ltd. London. https://doi.org/10.5962/bhl.title.6597
]Search in Google Scholar
[
De La Torre AR, Briol I, Bousquet J, Ingvarson PK, Jansson S, Jones SJM, et al. (2014) Insights into conifer giga-genomes. Plant Physiology 166:1724-1732. https://doi.org/10.1104/pp.114.248708
]Search in Google Scholar
[
De Luc A, Adams RA, Zhong M (1999) Using random amplification of polymorphic DNA for a taxonomic reevaluation of Pfitzer Juniperus. HortScience 34:1123-1125. https://doi.org/10.21273/hortsci.34.6.1123
]Search in Google Scholar
[
Doudrick RL, Heslop-Harrison JS, Nelson CD, Schmidt T, Nance WL Schwarzacher T (1995) Karyotype of slash pine (Pinus elliottii var. elliottii) using patterns of fluorescence in situ hybridization and fluorochrome banding. J. Heredity 86:289-296. https://doi.org/10.1093/oxfordjournals.jhered.a111583
]Search in Google Scholar
[
Douhonikoff V, Dodd RS (2011) Lineage divergence in coast redwood (Sequoia sempervirens), detected by a set of nuclear microsatellite loci. Am Midl. Nat. 165:22-37. https://doi.org/10.1674/0003-0031-165.1.22
]Search in Google Scholar
[
Du Y-P, Bi Y, Zhang MF, Yang F-P, Jia GX, Zhang XH (2017) Genome size diversity in Lilium (Liliaceae) is correlated with karyotype and environment traits. Front Plant Sci. 8:1303, doi:10,3389/pls.2017.01303. https://doi.org/10.3389/fpls.2017.01303
]Search in Google Scholar
[
Drewry A (1988) The G-banded karyotype of Pinus resinosa Ait. Silvae Genet 37:218-221.
]Search in Google Scholar
[
Elguindy MM, Kopp F, Goodarzi M, Rehfeld F, Thomas A, Chang, TC, et al. (2019) PUMILIO, but not RBMX, binding is required for regulation of genomic stability by noncoding RNA NORAD. eLife 8:e48625. https://doi.org/10.7554/elife.48625
]Search in Google Scholar
[
Farhat P, Hidalgo O, Robert T, Siljak-Yakovlev S, Leitch IJ, Adams RP, et al. (2019) Polyploidy in conifers genus Juniperus: An unexpected high rate. Front. Plant Sci. 10:676. Doi: 10.3389/fpls. 2019.00676. https://doi.org/10.3389/fpls.2019.00676
]Search in Google Scholar
[
Farhat P, Siljak-Yakovlev S, Valentine N, Fabregat C, Lopez-Udias S, Salazar-Mendiaz C, et al. (2020) Gene flow between wild diploid and tetraploid junipers – two contrasting evolutionary pathways in two Juniperus populations. BMC Evolutionary Biology 20:148. Doi:org/10.1186/s12862-0202-01688-3. https://doi.org/10.1186/s12862-020-01688-3
]Search in Google Scholar
[
Farhat P, Siljak-Yakovlev S, Hidalgo O, Rushforth K, Bartel JA, Valentine N, et al. (2022) Polyploidy in Cupressaceous: discovery of a new naturally occurring tetraploid, Xanthcyparis vietnamensis. Journal of Systematics and Evolution 60:824-834. https://doi.org/10.1111/jse.12751
]Search in Google Scholar
[
Farhat P, Siljak-Yakovlev S, Takvorian N, Kharrat MBD, Robert T. (2023) Allopolyploidy- an underestimated driver in Juniperus evolution. Life 13:14n79. https://doi.org/10.3390/life13071479
]Search in Google Scholar
[
Farjon A (2018) Conifers of the world. Kew Bulletin 73:8. Doi 10.1007/S122250018-9738-5 https://doi.org/10.1007/s12225-018-9738-5
]Search in Google Scholar
[
Fox DT, Soltis DE, Soltis PS, Ashman TL, Vande Peer (2020) Polyploidy: a biological force from cells to ecosystems. Trends in Cell Biology 30:688-694. https://doi.org/10.1016/j.tcb.2020.06.006
]Search in Google Scholar
[
Fraver S, Gonzalez ME, Silla F, Lara A (1999) Composition and structure of remnant Fitzroya cupressoides forests of southern Chile’s Central Depression. J Torr Bot Soc 126:49-57. https://doi.org/10.2307/2997254
]Search in Google Scholar
[
Gadek PA, Alpers DL, Heselwood MM, Quinn CJ (2000) Relationship within Cupressaceae sensu lato: A combined morphological and molecular approach. Am J Bot 87:1044-1057. https://doi.org/10.2307/2657004
]Search in Google Scholar
[
Hair JB (1968) The chromosomes of the Cupressaceae. I. Tetraclineae and Actinostrobeae (Callitroideae). New Zealand J Bot 6:277-284. https://doi.org/10.1080/0028825x.1968.10428813
]Search in Google Scholar
[
Hall MT, Mukherjee A, Crowley WR (1973) Chromosome counts in cultivated junipers. Bot Gaz 140:364-370. https://doi.org/10.5962/p.184526
]Search in Google Scholar
[
Hamrick R, Godt MJW, Sherman-Broyles SL (1992) factors influencing level of genetic 5:95-124. in woody plant species, New Forests https://doi.org/10.1007/bf00120641
]Search in Google Scholar
[
Hida M (1957) The comparative study of Taxodiaceae from the standpoint of development of cone scales. Bot Mag Tokyo70:45-51. https://doi.org/10.15281/jplantres1887.70.44
]Search in Google Scholar
[
Hirayoshi I, Nakamura Y (1943) Chromosome number of Sequoia sempervirens. Bot Zool 2:73-75.
]Search in Google Scholar
[
Hizume M, Shibata F, Matsusaki Y, Garajova Z (2002) Chromosome identification and comparative karyotype analysis of four Pinus species. Theor Appl Genet 105:491-497. https://doi.org/10.1007/s00122-002-0975-4
]Search in Google Scholar
[
Hizume M, Kaneko K, Miyake T (2014) A method for preparation of meiotic chromosomes of conifers and its applicatios. Chromosome Botany 9:83-88. https://doi.org/10.3199/iscb.9.83
]Search in Google Scholar
[
Houminer N, Riov J, Moshelion M, Osem Y, David-Scheartz R (2022) Comparison of morphological and physiological traits between Pinus brutia, Pinus halepensis, and their vigorous F1 hybrids.Forests 13:1477. https.//doi.org/10.3390/f13091477.
]Search in Google Scholar
[
Ibarra-Laclette E, Lyons E, Hernandez-Guzman G, Pérez-Torres CA, Carretero-Paulet L, Chang TH, et al (2013) Architecture and evolution of a minute plant genome. Nature 498: 94-98. https://doi.org/10.1038/nature12132
]Search in Google Scholar
[
Illies Z (1951) Colchicineversuche an Larix decidua Miller und Picea abies (L.) Karst. Z. Forstgenetik u Forstpflanzenzüchtung 1: 36-39.
]Search in Google Scholar
[
Illies Z (1953) Keimlingsabnormalitäten bei Picea abies (l.) Karst. Z. Forstgenetik u. Forstpflanzenzüchtung 2:28-32.
]Search in Google Scholar
[
Illies Z (1957) Cytologische Beobachtungen an einer 7 jährigen CO Generation von Lärche. Silvae Genet. 6:151-152.
]Search in Google Scholar
[
Illies Z (1958) Polysomatie im Merristem von Einzelbaumabsaaten bei Picea abies. Silvae Genet. 7:94-97. https://doi.org/10.1007/bf00603294
]Search in Google Scholar
[
Illies Z (1966) The development of aneuploidy in somatic cells of experimentally produced triploid larches. Heredity 21:379-385. https://doi.org/10.1038/hdy.1966.39
]Search in Google Scholar
[
Illies Z (1969) Two aneuploid generations of larch hybrids derived from colchicine induced Larix sp. Proc. Second World Consulation on Forest Tree Breeding, 5p.
]Search in Google Scholar
[
Jagel A, Dörken V (2014) Morphology and morphogenesis of seed cones of the Cupressaceae- Part I: Cunnighamioideae, Athrotaxooideae, Tawanioidaea, Sequoiodeae, Taxodioiodeae. Bull Cco 3:117-136. https://doi.org/10.1016/j.flora.2017.03.008
]Search in Google Scholar
[
Jensen H, Levan A (1941) Colchicine-induced tetraploidy in Sequoiadendron giganteum. Hereditas 27:220-224.
]Search in Google Scholar
[
Johnsson H (1975) Observations on induced polyploidy in some conifers (Pinus sylvestris, P. contorta, Picea abies, and Larix sibirica. Silvae Genet 24:62-68.
]Search in Google Scholar
[
Jiao Y, Wickett N, Ayyampalayam S et al (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97-100. https://doi.org/10.1038/nature09916
]Search in Google Scholar
[
Keillander CL (1950) Polyploidy in Picea abies. Hereditas 36:513-516.
]Search in Google Scholar
[
Khanduja JS, Calvo IA, Joh RI, Till IT, Motamedi M (2016) Nuclear noncoding RNAs and genome stability. Molecular Cell 63:7-20. https://doi.org/10.1016/j.molcel.2016.06.011
]Search in Google Scholar
[
Khoshoo TN (1959) Polyploidy in gymnosperms. Evolution 13:24-39.
]Search in Google Scholar
[
Khoshoo TN (1961) Chromosome numbers in gymnosperms. Silvae Genet 10:1-9. https://doi.org/10.1111/j.1558-5646.1959.tb02991.x
]Search in Google Scholar
[
Kim CS, Lee SK (1973) Colchitriploid Pinus banksiana. Inst. For. Gen Res Rep No 10 Suwon
]Search in Google Scholar
[
Kremer A, Cassoli M, Barreneche T et al (2007) Fagaceae trees. In: Kole C (Ed) Genome mapping and molecular breeding of plants, Vol. 7. Springer Verlag, Berlin, pp. 162-187. https://doi.org/10.1007/978-3-540-34541-1_5
]Search in Google Scholar
[
Krutovskii KV, Politov DV (1995) Allozyme evidence for polyzygotic polyembryony in Siberian stone pine (Pinus sibirica Du Tour). Theoretical and Applied Genetics 90:811-818. https://doi.org/10.1007/bf00222016
]Search in Google Scholar
[
Ku H.-M, Vision T, Liu J, Tanksley SD (2000) Comparing sequenced segments of the tomato and Arabidopsis genomes: Large-scale duplication followed by selective gene loss creates a network of synteny. Proc Natl Acad Sci USA 97:9121-9126. https://doi.org/10.1073/pnas.160271297
]Search in Google Scholar
[
Kumaran R, Yang S-Y, Leu J-Y (2013) Characterization of chromosome stability in diploid, polyploidy and hybrid yeast cells. PLoS ONE 8:e68094. https://doi.org/10.1371/journal.pone.0068094
]Search in Google Scholar
[
Kusumi J, Tsumura Y, Yoshimaru H, Tachida H (2000) Phylogenetic relationship in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chlL gene, trnL-trnF IGS region and trnL intron sequences. Am J Bot 87:1480-1488. https://doi.org/10.2307/2656874
]Search in Google Scholar
[
Landis JB, Soltis DE, Li Z, Marx MS, Tank DC, et. al. (2018) Impact of whole genome duplication events on diversification in angiosperms. American Journal of Botany 105: 348-363. https://doi.org/10.1002/ajb2.1060
]Search in Google Scholar
[
Lara A, Villalba R (1993) A 3620-year temperature record from Fitzroya cupressoides tree rings in southern South America. Science 260:1104-1106. https://doi.org/10.1126/science.260.5111.1104
]Search in Google Scholar
[
Larsen SC, Westergaard M (1938) Contribution to the cytology of forest trees. I. Triploid hybrids between Larix decidua Miller & L. occidentalis Nutt Jour Genet 36:53-530. https://doi.org/10.1007/bf02982464
]Search in Google Scholar
[
Lee S, Kopp F, Chang T-C, et al. (2016) Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell 164:69-80. https://doi.org/10.1016/j.cell.2015.12.017
]Search in Google Scholar
[
Lehmann R, Kovařík A, Ocalewicz K, Kirtiklis L, Zuccolo A, Tegner JN, Wanzenböck J, Bernatchez L, Lamatsch DK, Symonová R (2021) DNA transposon expansion is associated with genome size increase in mudminnows. Benome Biology 13(10) doi.10. 1093/gbe/evab228. https://doi.org/10.1093/gbe/evab228
]Search in Google Scholar
[
Leitch IJ, Hanson L, Winfield M, Parker J Bennett MD (2001) Nuclear DNA C-values complete familial representation in gymnosperms. Ann Bot 88:843-849. https://doi.org/10.1006/anbo.2001.1521
]Search in Google Scholar
[
Leitch IJ, Beaulieu JM, Cheung K, Hanson L, Lysak MA, Fay MF (2007) Punctuated genome size evolution in Liliaceae. Evol Biol 20:2296-2308. https://doi.org/10.1111/j.1420-9101.2007.01416.x
]Search in Google Scholar
[
Libby WJ, Anekonda TS, Kuser JE (1996) The genetic architecture of coast redwood. In: LeBlanc J (ed) Proceedings of the conference on coast redwood forest ecology and management. Humboldt State University, Arcata, California, pp. 147-149.
]Search in Google Scholar
[
Lohaus R, Van de Peer Y (2016) Of dups and dinos: evolution of the K/Pg boundary. Current Opinion in Plant Biology 30:62-69. https://doi.org/10.1016/j.pbi.2016.01.006
]Search in Google Scholar
[
Li Z, Baniaga AE, Sessa, EB, Scascitelli M, Graham, SW, Riesenberg, LH, et al. (2015) Early genome duplications in conifers and other seed plants. Sci Adv 2015;1: e1501084. https://doi.org/10.1126/sciadv.1501084
]Search in Google Scholar
[
Liu Y, El-Kassaby Y (2019) Novel insight into plant genome evolution and adaptation as revealed through transposable elements and non-coding RNAs in conifers. Genes 10:228, doi:10.3390/genes10030228. https://doi.org/10.3390/genes10030228
]Search in Google Scholar
[
Lubaretz O, Fuchs J, Ahne R, Meister A, Schubert L (1996) Karyotyping of three Pinaceae species via fluorescent in situ hybridization and computer-aided chromosome analysis. Theor Appl Genet 92:411-416. https://doi.org/10.1007/bf00223687
]Search in Google Scholar
[
Magadum SK, Banerjee U, Murugan P, Gangapur D, Ravikesavan R (2013) Gene duplications a major force in evolution. J Genet 92:155-161. https://doi.org/10.1007/s12041-013-0212-8
]Search in Google Scholar
[
Matsuda K, MIyajima H (1977) On the triploid of Cryptomeria japonica D, Don. Journal of Japanese Forest Society 59:148-150.
]Search in Google Scholar
[
Mehra PN, Khoshoo TN (1956) Cytology of conifers, I J Genet 54:165-180. https://doi.org/10.1007/bf02981708
]Search in Google Scholar
[
Mergen F (1958) Natural polyploidy in slash pine. For Sci 4:283-295. https://doi.org/10.1126/science.121.3139.306
]Search in Google Scholar
[
Merino I, Abrahamsson M, Sterck L, Craven-Bartle B, Canovas F, Von Arnold S (2016) Transcript profiling for early stages during embryo development in Scots pine. BMC Plant Biology 16:255. https://doi.org/10.1186/s12870-016-0939-5
]Search in Google Scholar
[
Miller CN (1977) Mesozoic conifers. Bot Rev 43:217-280. https://doi.org/10.1007/bf02860718
]Search in Google Scholar
[
Mirov NT (1967) The Genus Pinus. Ronald Press, New York. https://doi.org/10.1126/science.158.3801.626
]Search in Google Scholar
[
Müntzing A (1933) Hybrid incompatibility and origin of polyploidy. Hereditas 18:33-55.
]Search in Google Scholar
[
Nagano K, Matoba H, Yonemura K, Matsuda Y, Murata T, Hoshi Y (2007) Karyo-type analysis of three Juniperus species using fluorescence in situ hybridization (FISH) with two ribosomal RNA genes. Cytologia 72:37-42. https://doi.org/10.1508/cytologia.72.37
]Search in Google Scholar
[
Neale DB, Wheeler, NC (2019) The Conifers: Genomes, Variation and Evolution. Springer Verlag, Switzerland. https://doi.org/10.1007/978-3-319-46807-5_1
]Search in Google Scholar
[
Neale DB, Zimin AV, Zaman S, Scott AD, Shrestha B, Workman RE, et al. (2022) Assembled and annotated 26.5 Gbp coast redwood: a resource for estimating evolutionary adaptive potential and investigating hexaploid origin. G3 Genes Genomes Genetics 12:1-13. https://doi.org/10.1093/g3journal/jkab380
]Search in Google Scholar
[
Nishant KT, Wei W, Mancera E, Argueso JL, Schlattl A, Delhomme N, et al. (2010) The Baker’s yeast diploid genome is remarkably stable in vegetative growth and meiosis. PLoS Genet 6:e1001109. https://doi.org/10.1371/journal.pgen.1001109
]Search in Google Scholar
[
Nishimura S (1960) Chromosome numbers of polyembryonic seedlings of Pinus thunbergii Parl. J Jap For Sci 42:263-264.
]Search in Google Scholar
[
Niu S, Li J, Bo W, Yang W, Zuccolo A, Giacomello S, et al (2022) The Chinese genome and methylation unveil key features of conifer genome. Cell 185:204-207.
]Search in Google Scholar
[
Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579-584. https://doi.org/10.1016/j.cell.2021.12.006
]Search in Google Scholar
[
O’Hara KL, Cox LE, Nikolaeva S, Bauer JJ, Hedges R (2017) Regeneration dynamics of coast redwood, a sprouting conifer species: a review with implications for management and restoration. Forests 8:144; https://doi.org/10.3390/f8050144
]Search in Google Scholar
[
Ohno S (1970) Evolution by Gene Duplication. Springer Verlag, Berlin. https://doi.org/10.1007/978-3-642-86659-3
]Search in Google Scholar
[
Ohri D (2021a) Polyploidy in Gymnsoperms- a reappraisal. Silvae Genet 70:22-38. https://doi.org/10.2478/sg-2021-0003
]Search in Google Scholar
[
Ohri D (2021b) karyotype evolution in conifers. Feddes Repertorium. https://doi.org/10.1002/fedr.202100014.
]Search in Google Scholar
[
Ohri D (2021c) Variation and evolution of genome size in gymnosperms. Silvae Genet 70:156-169. https://doi.org/10.1002/fedr.202100014
]Search in Google Scholar
[
Olson DF, Roy DF, Walters GA (1990) Sequoia sempervirens (D. Don) Endl. Redwood. In: Burns RM, Honkala BH (Technical Coordinators) Silvics of North America:1. Conifers. Agriculture Handbook. U.S. Department of Agriculture. Forest Service, Washington, pp541-551.
]Search in Google Scholar
[
Otto SP, Whitton J (2000) Polyploidy incidence and evolution. Annu Rev Genet 34:401-437. https://doi.org/10.1146/annurev.genet.34.1.401
]Search in Google Scholar
[
Panchy N, Lehti-Shiu M, Shiu S-H (2016) Evolution of gene duplication in plants. Plant Physiology 171:2294-2316. https://doi.org/10.1104/pp.16.00523
]Search in Google Scholar
[
Pavy N, Pelgas B, Laroche J, Rigault P, Isabel N, Bousquet J (2012) A spruce gene map infers plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers. BMC Biology 1084. https://doi.org/10.1186/1741-7007-10-84
]Search in Google Scholar
[
Pederick LA (1970) Chromosome relationship between Pinus species. Silvae Genet 19:171-180.
]Search in Google Scholar
[
Premoli AC, Kitzberger T, Veblen TT (2000) Conservation genetics of the endangered conifer Fitzroya cupressoides in Chile and Argentina. Conservation Genet 1:57-66. https://doi.org/10.4206/bosque.2000.v21n1-09
]Search in Google Scholar
[
Ramage BS, O’Hara KL, Caldwell BT (2010) The role of fire in the competitive dynamics of coast redwood forests. Ecosphere 1(6):1-18. https://doi.org/10.1890/es10-00134.1
]Search in Google Scholar
[
Rastogi S, Ohri D (2020) Chromosome numbers in gymnosperms: an update. Silvae Genet 69:13-19. https://doi.org/10.2478/sg-2020-0003
]Search in Google Scholar
[
Reams AB, Roth JR (2015) Mechanisms of gene duplication and amplification. Cold Spring Harb Perspect Biol 5:7:a016592. https://doi.org/10.1101/cshperspect.a016592
]Search in Google Scholar
[
Rogers DL (1997 Inheritance of allozymes from seed tissues of the hexaploid gymnosperm, Sequoia sempervirens (D. Don. Endl.) (coast redwood). Heredity 78:166-175. https://doi.org/10.1038/sj.hdy.6881120
]Search in Google Scholar
[
Romo A, Hidalgo O, Boratynski A, Sobierajska K, Jasinska K, Valles J, et al. (2013) Genome size and ploidy levels in highly fragmented habitats: the case of western Mediterranean Juniperus (Cupressaceae) with special emphasis on J. thurifera. Tree Genetics and Genomes 9:587-599. https://doi.org/10.1007/s11295-012-0581-9
]Search in Google Scholar
[
Ruprecht C, Lohaus R, Vaneste K, Mutwil M, Nikoloski Z, Van de Peer Y, et al. (2017) Revisiting ancestral polyploidy in plants. Sci Adv 3:e1603195. https://doi.org/10.1126/sciadv.1603195
]Search in Google Scholar
[
Sax K, Sax HJ (1933) Chromosome numbers and morphology in the conifers. J Arnold Arboretum 14:356-375. https://doi.org/10.5962/bhl.part.9959
]Search in Google Scholar
[
Saylor LC (1972) Karyotype analysis of the genus Pinus - subgroup Pinus. Silvae Genet 21:155-163.
]Search in Google Scholar
[
Saylor LC (1983) Karyotype analysis of the genus Pinus - subgroup Strobus. Silvae Genet 32:119-124. https://doi.org/10.1508/cytologia.35.294
]Search in Google Scholar
[
Saylor LC, Simons HA (1970) Karyology of Sequoia sempervirens: karyotype and accessory chromosomes. Cytologia 35:294-303. https://doi.org/10.1508/cytologia.35.294
]Search in Google Scholar
[
Schartl M, Woltering JM, Irisari I, Du K, Kneitz S, Pippel M, et al. (2024) The genomes of all lungfish inform on genomic expansion and tetrapod evolution. Nature 634:96-103. https://doi.org/10.1038/s41586-024-07830-1
]Search in Google Scholar
[
Schubert I, Vu GTH (2016) Genome stability and evolution: attempting a holistic view. Trends in Plant Science 21:749-757. https://doi.org/10.1016/j.tplants.2016.06.003
]Search in Google Scholar
[
Scott AD, Stenz NWM, Ingvarsson PK, Baum DA (2016) Whole genome duplication in coast redwood (Sequoia sempervirens) and its implications for explaining the rarity of polyploidy in conifers. New Phytologist 211:186-193. https://doi.org/10.1111/nph.13930
]Search in Google Scholar
[
Sewell MM, Sherman BK, and Neale DB (1999) A consensus map for loblolly pine (Pinus taeda L.). I. Construction and integration of individual linkage maps from two outbred three-generation pedigrees. Genetics 151:321-330. https://doi.org/10.1093/genetics/151.1.321
]Search in Google Scholar
[
Shibata F, Matsusaki Y, Hizume M (2016) A comparative analysis of multi-probe fluorescence in situ hybridization (FISH) karyotypes in 26 Pinus species (Pinaceae). Cytologia 81:409-421. https://doi.org/10.1508/cytologia.81.409
]Search in Google Scholar
[
Silla F, Fraver S, Lara A, Allnutt TR, Newton A (2002) Regeneration and stand dynamics of Fitzroya cupressoides (Cupressaceae) forests of southern Chile’s central depression. For Ecol Manage 165:213-224. https://doi.org/10.1016/s0378-1127(01)00619-3
]Search in Google Scholar
[
Sillett SC, Kramer RD, Van Pelt R, Carroll AL, Campbbell-Spickler J, Antoine ME (2021) Comparative development of four tallest conifer species. For Ecol Manage 480:118688. https://doi.org/10.1016/j.foreco.2020.118688
]Search in Google Scholar
[
Stebbins GL (1948) The chromosomes and relationship of Metasequoia and Sequoia. Science 108:95-98. https://doi.org/10.1126/science.108.2796.95
]Search in Google Scholar
[
Stebbins GL (1951) Variation and Evolution in Plants. Columbia University Press, New York https://doi.org/10.1126/science.112.2921.764-b
]Search in Google Scholar
[
Stull GW, Qu X-J, Parins-Fukuchi C, Yang Y-Y, Yang J-O, Yang Z-Y, et al. (2021) Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms. Nature Plants 7:1015-1025. https://doi.org/10.1038/s41477-021-00964-4
]Search in Google Scholar
[
Takaso T, Tomlinson PB (1992) Seed cone and ovule ontogeny in Metasequoia, Sequoia and Sequoiadendron (Taxodiaceae, Coniferales). Bot J Linn Soc 100:15-37. https://doi.org/10.1111/j.1095-8339.1992.tb00256.x
]Search in Google Scholar
[
The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796-815. https://doi.org/10.1038/35048692
]Search in Google Scholar
[
Tredici PD (1999) Redwood burls: immortality underground. Arnoldia 59:14-22. https://doi.org/10.5962/p.251380
]Search in Google Scholar
[
Tuscan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596-1604.
]Search in Google Scholar
[
Vallés V, Garnatje T, Robin O, Siljak-Yakovlev S (2015) Molecular cytogenetics studies in western Mediterranean Juniperus (Cupressaceae): a constant model for GC-rich chromosomal regions and rDNA loci with evidence for paleopolyploidy. Tree Genetics and Genomes 11:43 https://doi.org/10.1007/s11295-015-0860-3
]Search in Google Scholar
[
Van de Peer Y, Maere S, Meyer A (2009) The evolutionary significance of ancient genome duplications. Nature Reviews Genetics 10:725-732. https://doi.org/10.1038/nrg2600
]Search in Google Scholar
[
Van de Peer Y, Mizrachi E, Marchal K (2017) The evolutionary significance of polyploidy. Nature Reviews Genetics 18:411-424. https://doi.org/10.1038/nrg.2017.26
]Search in Google Scholar
[
Van de Peer Y, Ashman T-L, Soltis P, Soltis D (2021) Polyploidy: an evolutionary and ecological force in stressful times. Plant Cell 33:11-26. https://doi.org/10.1093/plcell/koaa015
]Search in Google Scholar
[
Vaneste K, Baele G, Maere S, van de Peer Y (2014) Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary. Genome Research 24:1334-1347. https://doi.org/10.1101/gr.168997.113
]Search in Google Scholar
[
Veblen TT, Ashton DH (1982) The regeneration status of Fitzroya cupressoides in the Cordilera Pelada, Chile. Biol Cons 23:141-161. https://doi.org/10.1016/0006-3207(82)90036-2
]Search in Google Scholar
[
Von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell and Organ Culture 69:233-249. https://doi.org/10.1093/jexbot/51.343.249
]Search in Google Scholar
[
Voronova A, Rendon-Anaya M Ingvarsson P, Kalendar R, Rungis, D (2020) Comparative study of pine reference genomes reveal transposable element interconnected gene networks. Genes 11, 2016, https://doi:10.3390/genes11101216.
]Search in Google Scholar
[
Wan T, Gong Y, Liu Z, Zhou Y, Dai C, Wang Q (2022) Evolution of complex genome architecture in gymnosperms. GigaScience 11:1-10. https://doi.org/10.1093/gigascience/giac078
]Search in Google Scholar
[
Wang J, Lu N., Yi F, Xiao Y (2020) Identification of transposable elements in conifer and their potential application in breeding. Evolutionary Bioinformatics 16:1-4. https://doi.org/10.1177/1176934320930263
]Search in Google Scholar
[
Wang K, Wang J, Zhu C, Yang L, Ren Y, Ruan J. et al (2021) African lungfish genome sheds light on the vertebrate water-to-land transition. Cell 184:1362-1376. https://doi.org/10.1016/j.cell.2021.01.047
]Search in Google Scholar
[
Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225-249. https://doi.org/10.1007/978-94-011-4221-2_12
]Search in Google Scholar
[
Wendel JF (2015) The wondrous cycles of polyploidy in plants. American Journal of Botany 102:1753-1756. https://doi.org/10.3732/ajb.1500320
]Search in Google Scholar
[
Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nature Rev. Genet. 2:323-341 https://doi.org/10.1038/35072009
]Search in Google Scholar
[
Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Riesenberg LS (2009) The frequency of polyploidy speciation in vascular plants. Proc Natl Acad Sci USA 106:13875-13879. https://doi.org/10.1073/pnas.0811575106
]Search in Google Scholar
[
Wu S, Han B, Jiao Y (2020) Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms. Molecular Plant 13:59-71. https://doi.org/10.1016/j.molp.2019.10.012
]Search in Google Scholar
[
Yang Z-Y, Ran J-H, Wang Z-Q (2012) Three genome-based phylogeny of Cupressaceae sI.: further evidence for the evolution of gymnosperms and southern hemisphere biography. Molecular Phylogenetics and Evolution 64:452-470. https://doi.org/10.1016/j.ympev.2012.05.004
]Search in Google Scholar
[
Yi F, Ling J, Xiao Y, Zhang H, Ouyang F, Wang J (2018). ConTEdb: a comprehensive database of transposable elements in conifers. https://doi.org/10.1093/database/bay131
]Search in Google Scholar
[
Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292-298. https://doi.org/10.1016/s0169-5347(03)00033-8
]Search in Google Scholar
[
Zhang L, Wu S, Chang X, Wang X, Zhao Y, Xia Y, et al. (2020) The ancient wave of polyploidization events in flowering plants and there facilitated adaptation to environmental stress. Plant Cell Environ 43:2847-2856. https://doi.org/10.1111/pce.13898
]Search in Google Scholar
[
Zhang R-G, Liu H, Shang, H-Y, Shu H, Liu D-T, Yang H, et al. (2024) Convergent patterns of karyotype evolution underlying karyotype uniformity in conifers. Advanced Science, 2411098 (1-12). https://doi.org/10.1002/advs.202411098
]Search in Google Scholar
[
Zinnai L (1952) Tetraploid plants in Japanese red pine (Pinus densiflora Sieb. Et Zucc.) discovered in transplant beds. J Jap For Soc 34:185-187.
]Search in Google Scholar
[
Zinnai L (1953) The morphological characters and the fertility of the pollen of a tetraploid Japanese red pine induced by the colchicines method. J Jap For Soc 35:245-248.
]Search in Google Scholar
[
Zonneveld BJM (2012) Conifer genome size of 172 species, covering 64 of 67 genera, range from 8 to 72 picogram. Nordic Journal of Botany 30:490-502. https://doi.org/10.1111/j.1756-1051.2012.01516.x
]Search in Google Scholar