[
Abdelghany AM, Zhang S, Azam M, Shaibu AS, Feng Y, Qi J, Li J, Li Y, Tian Y, Hong H, Lamlom SF (2021) Exploring the phenotypic stability of soybean seed compositions using multi-trait stability index approach. Agronomy 11(11): 2200. https://doi.org/10.3390/agronomy11112200
]Search in Google Scholar
[
Adjebeng-Danquah J, Manu-Aduening J, Gracen VE, Asante IK, Offei SK (2017) AMMI stability analysis and estimation of genetic parameters for growth and yield components in cassava in the forest and guinea savannah ecologies of Ghana. International Journal of Agronomy 2017. https://doi.org/10.1155/2017/8075846
]Search in Google Scholar
[
Albert DJ, Clark TA, Dickson RL, Walker JCF (2002) Using acoustics to sort radiata pine pulp logs according to fibre characteristics and paper properties. International Forestry Review 4(1):12-19. http://www.jstor.org/stable/43740941
]Search in Google Scholar
[
Alves RS, de Carvalho Rocha JRDAS, Teodoro PE, de Resende MDV, Henriques EP, LA Silva, Carneiro PCS, Bhering LL (2018) Multiple-trait BLUP: a suitable strategy for genetic selection of Eucalyptus. Tree Genetics & Genomes 14:1-8. https://doi.org/10.1007/s11295-018-1292-7
]Search in Google Scholar
[
Apiolaza LA, Raymond CA, Yeo BJ (2005) Genetic variation of physical and chemical wood properties of Eucalyptus globulus. Silvae Genetica 54:160-166. https://doi.org/10.1515/sg-2005-0024
]Search in Google Scholar
[
Benakanahalli NK, Sridhara S, Ramesh N, Olivoto T, Sreekantappa G, Tamam N, Abdelbacki AM, Elansary HO, Abdelmohsen SA (2021) A framework for identification of stable genotypes basedon MTSI and MGDII indexes: An example in guar (Cymopsis tetragonoloba L.). Agronomy 11(6):1221. https://doi.org/10.3390/agronomy11061221
]Search in Google Scholar
[
Bison O, Ramalho MAP, Rezende GDSP, Aguiar AM, Resende MDVD (2007) Combining ability of elite clones of Eucalyptus grandis and Eucalyptus urophylla with Eucalyptus globulus. Genetics and Molecular Biology 30(2):417-422. https://doi.org/10.1590/S1415-47572007000300019
]Search in Google Scholar
[
Carrillo I, Vidal C, Elissetche JP, Mendonça RT (2018) Wood anatomical and chemical properties related to the pulpability of Eucalyptus globulus: a review. Southern Forests. Journal of Forest Science 80(1):1-8. https://hdl.handle.net/10520/EJC-11d90bd789
]Search in Google Scholar
[
Chaix G, Denis M, Polidori J, Vigneron P, Makouanzi G, Diombokho A, Nourissier-Mountou S, Bouvet JM (2011) Genotype X environment interactions for growth and wood traits for eucalyptus hybrids. In Proceedings, IUFRO Working Group 2.08.03: improvement and culture of eucalypts. Porto Seguro, Brazil, pp 175–176. https://agritrop.cirad.fr/564708/
]Search in Google Scholar
[
Chandrasekar R, Vinothkumar A, Nair SG, Sivakumar V, Nicodemus A (2017) Additive Main Effects and Multiplicative Interactions (AMMI) Analysis of Growth of Half-sib Families of Eucalyptus camaldulensis Across Environments. Madras Agricultural Journal 104 (4-6): 197-20.
]Search in Google Scholar
[
Chen S, Weng Q, Li F, Li M, Zhou C, Gan S (2018) Genetic parameters for growth and wood chemical properties in Eucalyptus urophylla× E. tereticornis hybrids. Annals of Forest Science 75:16. https://doi.org/10.1007/s13595-018-0694-x
]Search in Google Scholar
[
Costa e Silva J, Potts BM. Dutkowski GW (2006) Genotype by environment interaction for growth of Eucalyptus globulus in Australia. Tree Genetics & Genomes 2:61-75. https://doi.org/10.1007/s11295-005-0025-x
]Search in Google Scholar
[
Dasgupta MG, Muneera Parveen A, Shanmugavel S, Dharanishanthi V, Muthupandi M, Kumar N, Chauhan SS, Kalaivanan J, Mohan H, Krutovsky KV, Rajasugunasekar D (2021) Targeted re-sequencing and genome-wide association analysis for wood property traits in breeding population of Eucalyptus tereticornis× E. grandis. Genomics 113:4276-4292. https://doi.org/10.1016/j.ygeno.2021.11.013
]Search in Google Scholar
[
de Araujo MJ, de Paula RC, Campoe OC, Carneiro RL (2019) Adaptability and stability of eucalypt clones at different ages across environmental gradients in Brazil. Forest Ecology and Management 454:117631. https://doi.org/10.1016/j.foreco.2019.117631
]Search in Google Scholar
[
Goncalves JLM, Stape JL, Laclau JP, Smethurst P, Gava JL (2004) Silvicultural effects on the productivity and wood quality of eucalypt plantations. Forest Ecology and Management 193:45-61. https://doi.org/10.1016/j.foreco.2004.01.022
]Search in Google Scholar
[
Dhaka RK, Gunaga RP, Sinha SK, Thakur NS, Dobriyal MJ (2020) Influence of tree height and diameter on wood basic density, cellulose and fibre characteristics in Melia dubia Cav. families. Journal of the Indian Academy of Wood Science 17:138-144. https://doi.org/10.1007/s13196-020-00265-x
]Search in Google Scholar
[
Gallo R, Pantuza IB, dos Santos GA, de Resende MDV, Xavier A, Simiqueli GF, Baldin T, dos Santos OP, Valente BMDRT (2018) Growth and wood quality traits in the genetic selection of potential Eucalyptus dunnii Maiden clones for pulp production. Industrial Crops and Products 123:434-441.
]Search in Google Scholar
[
Gauch HG (2013) A simple protocol for AMMI analysis of yield trials. Crop Science 53: 1860–1869. https://doi.org/10.2135/cropsci2013.04.0241
]Search in Google Scholar
[
Gion JM, Carouché A, Deweer S, Bedon F, Pichavant F, Charpentier JP, Baillères H, Rozenberg P, Carocha V, Ognouabi N, Verhaegen D (2011) Comprehensive genetic dissection of wood properties in a widely-grown tropical tree: Eucalyptus. BMC Genomics 12:1-19. https://doi.org/10.1186/1471-2164-12-301
]Search in Google Scholar
[
Gomide JL, Fantuzzi Neto H, Regazzi AJ (2010) Analysis of wood quality criteria of eucalyptus wood for kraft pulp production. Revista Arvore 34:39-344. https://doi.org/10.1590/S0100-67622010000200017
]Search in Google Scholar
[
Hamilton MG, Freeman JS, Blackburn DP, Downes GM, Pilbeam DJ, Potts BM (2017) Independent lines of evidence of a genetic relationship between acoustic wave velocity and kraft pulp yield in Eucalyptus globulus. Annals of Forest Science 74:1-10. https://doi.org/10.1007/s13595-017-0617-2
]Search in Google Scholar
[
Hardner CM, Dieters M, Dale G, DeLacy I, Basford KE (2010) Patterns of geno-type-by-environment interaction in diameter at breast height at age 3 for eucalypt hybrid clones grown for reafforestation of lands affected by salinity. Tree Genetics & Genomes.6: 833-851. https://doi.org/10.1007/s11295-010-0295-9
]Search in Google Scholar
[
Hasegawa M, Mori M, Matsumura J (2015) Relations of fiber length to within-tree variation of ultrasonic wave velocity in fast-growing trees. Wood and Fiber Science 47(3):313-318. https://wfs.swst.org/index.php/wfs/article/view/2326/2247
]Search in Google Scholar
[
Hein PRG, Bouvet JM, Mandrou E, Vigneron P, Clair B, Chaix G (2012) Age trends of microfibril angle inheritance and their genetic and environmental correlations with growth, density and chemical properties in Eucalyptus urophylla ST Blake wood. Annals of Forest Science 69:681-691. https://doi.org/10.1007/s13595-012-0186-3
]Search in Google Scholar
[
Hung TD, Brawner JT, Meder R, Lee DJ, Southerton S, Thinh HH, Dieters MJ (2015) Estimates of genetic parameters for growth and wood properties in Eucalyptus pellita F. Muell. to support tree breeding in Vietnam. Annals of Forest Science 72:205-217. https://doi.org/10.1007/s13595-014-0426-9
]Search in Google Scholar
[
Hussain T, Akram Z, Shabbir G, Manaf A, Ahmed M (2021) Identification of drought tolerant Chickpea genotypes through multi trait stability index. Saudi Journal of Biological Sciences 28: 6818-6828. https://doi.org/10.1016/j.sjbs.2021.07.056.
]Search in Google Scholar
[
Jane FW (1956) The Structure of Wood, Adam and Charles Black Ltd., London. p. 478.
]Search in Google Scholar
[
Jiang J, Zhang Q, Ma L, Li J, Wang Z, Liu JF (2015) Joint prediction of multiple quantitative traits using a Bayesian multivariate antedependence model. Heredity 115:29-36. https://doi.org/10.1038/hdy.2015.9
]Search in Google Scholar
[
Karuntimi SM (2012) Modeling genotype by environment interaction of Eucalyptus using additive main effects and multiplicative interaction approach. Dissertation, University of Narobi. http://erepository.uonbi.ac.ke:8080/xmlui/handle/123456789/44213
]Search in Google Scholar
[
Kaur A, Monga R (2021) Eucalyptus trees plantation: a review on suitability and their beneficial role. International Journal of Bio-resource and Stress Management 12:16-25. http://dx.doi.org/10.23910/1.2021.2174
]Search in Google Scholar
[
Kien ND, Jansson G, Harwood C, Almqvist C (2010) Clonal variation and geno-type by environment interactions in growth and wood density in Eucalyptus camaldulensis at three contrasting sites in Vietnam. Silvae Genetica 59:17-28. https://doi.org/10.1515/sg-2010-0003
]Search in Google Scholar
[
Kube PD, Raymond CA, Banham PW (2001) Genetic parameters for diameter, basic density, cellulose content and fibre properties for Eucalyptus nitens. Forest Genetics 8:285-294.
]Search in Google Scholar
[
Kumar M, Turner S (2015) Protocol: a medium-throughput method for determination of cellulose content from single stem pieces of Arabidopsis thaliana. Plant Methods 11: 46. https://doi.org/10.1186/s13007-015-0090-6.
]Search in Google Scholar
[
Lavoranti OJ, Dias CTS, Kraznowski WJ (2007) Phenotypic stability via AMMI model with bootstrap re-sampling. Pesquisa Florestal Brasileira 54:45–52. http://www.alice.cnptia.embrapa.br/alice/handle/doc/314106
]Search in Google Scholar
[
Li Y, Suontama M, Burdon RD, Dungey HS (2017) Genotype by environment interactions in forest tree breeding: review of methodology and perspectives on research and application. Tree Genetic & Genomes 13:1-18. https://doi.org/10.1007/s11295-017-1144-x
]Search in Google Scholar
[
Lopez GA, Potts BM, Tilyard PA (2000) F1 hybrid inviability in Eucalyptus: the case of E. ovata× E. globulus. Heredity 85:242-250. https://doi.org/10.1046/j.1365-2540.2000.00739.x
]Search in Google Scholar
[
Lukmandaru G, Zumaini UF, Soeprijadi D, Nugroho WD, Susanto M (2016) Chemical properties and fiber dimension of Eucalyptus pellita from the 2nd generation of progeny tests in Pelaihari, South Borneo, Indonesia. Journal of the Korean Wood Science and Technology 44:571-588. https://doi.org/10.5658/WOOD.2016.44.4.571
]Search in Google Scholar
[
Macdonald E, Hubert J (2002) A review of the effects of silviculture on timber quality of Sitka spruce. Forestry 75:107-138. https://doi.org/10.1093/forestry/75.2.107
]Search in Google Scholar
[
Lima BM, Cappa EP, Silva-Junior OB, Garcia C, Mansfield SD, Grattapaglia D (2019) Quantitative genetic parameters for growth and wood properties in Eucalyptus “urograndis” hybrid using near-infrared phenotyping and genome-wide SNP-based relationships. PLoS One 14:e0218747. https://doi.org/10.1371/journal.pone.0218747
]Search in Google Scholar
[
Montesinos-López OA, Montesinos-López A, Crossa J, Toledo FH, Pérez-Hernández O, Eskridge KM, Rutkoski J (2016) A genomic Bayesian multi-trait and multi-environment model. G3: Genes Genomes Genetics 6:2725-2744. https://doi.org/10.1534/g3.116.032359
]Search in Google Scholar
[
Moreira-Vilar FC, Siqueira-Soares Rde C, Finger-Teixeira A, et al. (2014) The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than Klason and thioglycolic acid methods. PLoS One 9 (10): e110000
]Search in Google Scholar
[
Muneera Parveen A, Muthupandi M, Kumar N, Chauhan SS, Vellaichamy P, Senthamilselvam S, Rajasugunasekar D, Nagarajan B, Mayavel A, Bachpai VKW, Sivakumar V (2021) Quantitative genetic analysis of wood property traits in biparental population of Eucalyptus camaldulensis x E. tereticornis. Journal of Genetics 100:46. https://doi.org/10.1007/s12041-021-01299-x
]Search in Google Scholar
[
Nair SG, Veerasamy S, Vijayaraghavan A, Suresh G, Anees A, Yuvaraj T (2021a) Selection of clones of Eucalyptus camaldulensis (Dehnh.) based on stability for tree volume. Electronic Journal of Plant Breeding 12:732-740. https://doi.org/10.37992/2021.1203.102
]Search in Google Scholar
[
Nair SG, Veerasamy S, Vijayaraghavan A, Suresh G, Anees A, Vinothkumar A, Yuvaraj T (2021b) Stability of Stem form Quotient in Clones of Eucalyptus camaldulensis Dehnh across Southern India. Indian Forester 147:183-190. http://indianforester.co.in/index.php/indianforester/article/view/155972
]Search in Google Scholar
[
Nduwumuremyi A, Melis R, Shanahan P, Theodore A (2017) Interaction of geno-type and environment effects on important traits of cassava (Manihot esculenta Crantz). Crop Journal 5:373-386. https://doi.org/10.1016/j.cj.2017.02.004
]Search in Google Scholar
[
Ohshima J, Yokota S, Yoshizawa N, Ona T (2005) Examination of within-tree variation and the heights representing whole-tree values of derived wood properties for quasi-non-destructive breeding of Eucalyptus camaldulensis and Eucalyptus globulus as quality pulpwood. Journal of Wood Science 51:102-111. https://doi.org/10.1007/s10086-004-0625-3
]Search in Google Scholar
[
Oliveira TWGD, Paula RCD, Moraes MLTD, Alvares CA, Miranda AC, Silva PHMD (2018) Stability and adaptability for wood volume in the selection of Eucalyptus saligna in three environments. Pesquisa Agropecuaria Brasileira 53:611-619. https://doi.org/10.1590/S0100-204X2018000500010
]Search in Google Scholar
[
Olivoto T, Nardino M (2020) MGIDI: A novel multi-trait index for genotype selection in plant breeding. BioRxiv (Preprint) 2020:07. https://doi.org/10.1101/2020.07.23.217778
]Search in Google Scholar
[
Olivoto T, Lúcio AD, da Silva JA, Marchioro VS, de Souza VQ, Jost E (2019) Mean performance and stability in multi-environment trials I: combining features of AMMI and BLUP techniques. Agronomy Journal 111:2949-2960. https://doi.org/10.2134/agronj2019.03.0220
]Search in Google Scholar
[
Olivoto T, Lúcio AD, da Silva JA, Sari BG, Diel MI (2019) Mean performance and stability in multi‐environment trials II: Selection based on multiple traits. Agronomy Journal 111: 2961-2969. https://doi.org/10.2134/agronj2019.03.0221
]Search in Google Scholar
[
Olivoto T, Diel MI, Schmidt D, Lúcio ADC (2021) Multivariate analysis of strawberry experiments: where are we now and where can we go? BioRxiv (Preprint) 2020:12. https://doi.org/10.1101/2020.12.30.424876
]Search in Google Scholar
[
Osorio LF, White TL, Huber DA (2001) Age trends of heritabilities and geno-type-by environment Inter actions for growth traits and wood density form clonal trials of Eucalyptus grandis Hill ex Maiden and their implications for optimal selection age and design of clonal trials. Theoretical and Applied Genetics 106:735–743.
]Search in Google Scholar
[
Paux E, Tamasloukht MB, Ladouce N, Sivadon P, Grima-Pettenati J (2004) Identification of genes preferentially expressed during wood formation in Eucalyptus. Plant Molecular Biology 55:263-280. https://doi.org/10.1007/s11103-004-0621-4
]Search in Google Scholar
[
Pillai PC, Pandalai RC, Dhamodaran TK, Sankaran KV (2013) Effect of silvicultural practices on fibre properties of Eucalyptus wood from short-rotation plantations. New Forest 44:521-532. https://doi.org/10.1007/s11056-012-9360-6
]Search in Google Scholar
[
Pliura A, Zhang SY, MacKay J, Bousquet J (2007) Genotypic variation in wood density and growth traits of poplar hybrids at four clonal trials. Forest Ecology and Management 238:92-106. https://doi.org/10.1016/j.foreco.2006.09.082
]Search in Google Scholar
[
Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiology 127: 1513-1523. https://doi.org/10.1104/pp.010816
]Search in Google Scholar
[
Poke FS, Potts BM, Vaillancourt RE, Raymond CA (2006) Genetic parameters for lignin, extractives and decay in Eucalyptus globulus. Annals of Forest Science 63:813-821. https://doi.org/10.1051/forest:2006080
]Search in Google Scholar
[
Pollak EJ, Van der Werf J, Quaas RL (1984) Selection bias and multiple trait evaluation. Journal of Dairy Science 67:1590-1595. https://doi.org/10.3168/jds.S0022-0302(84)81481-2
]Search in Google Scholar
[
Potts BM, Dungey HS (2004) Interspecific hybridization of Eucalyptus: key issues for breeders and geneticists. New Forest 27:115-138. https://doi.org/10.1023/A:1025021324564
]Search in Google Scholar
[
Potts BM, Volker PW, Tilyard PA, Joyce K (2000) The genetics of hybridization in the temperate Eucalyptus. In: Hybrid Breeding and Genetics of Forest Trees. Proceedings of QFRI/CRC-SPF Symposium, Queensland, Australia, pp 200–211.
]Search in Google Scholar
[
Pour-Aboughadareh A, Poczai P (2021) Dataset on the use of MGIDI index in screening drought-tolerant wild wheat accessions at the early growth stage. Data in Brief 36: 107096. https://doi.org/10.1016/j.dib.2021.107096
]Search in Google Scholar
[
Pour-Aboughadareh A, Sanjani S, Nikkhah-Chamanabad H, Mehrvar MR, Asadi A, Amini A (2021) Identification of salt-tolerant barley genotypes using multiple-traits index and yield performance at the early growth and maturity stages. Bulletin of the National Research Centre 45:1-16. https://doi.org/10.1186/s42269-021-00576-0
]Search in Google Scholar
[
Pupin S, Silva PHM, Piotto FA, Miranda AC, Zaruma DUG, Sebbenn AM, Moraes MLT (2018) Genotype x Environment interaction, stability, and adaptability in progenies of Eucalyptus urophylla ST Blake using the AMMI model. Silvae Genetica 67:51-56. https://doi.org/10.2478/sg-2018-0007
]Search in Google Scholar
[
Rajasugunasekar D, Vellaichamy P, Mayavel A, Sivakumar V, Modhumitha D, Bachpai R Yasodha VKW, Nagarajan B (2015) Interfacing classical and molecular breeding in red gums in India: Observed and expected gains: In: Book of abstracts IUFRO Eucalypt Conference 2015, Zhanjiang, Guangdong, China.
]Search in Google Scholar
[
Raymond CA (2008) Influence of prior land use on wood quality of Pinus radiata in New South Wales, Australia. Forest Ecology Management 255:2626-2633. https://doi.org/10.1016/j.foreco.2008.01.020
]Search in Google Scholar
[
Raymond CA, Thomas DS, Henson M (2010) Predicting pulp yield and pulp productivity of Eucalyptus dunnii using acoustic techniques. Australian Forestry 73:91-97. https://doi.org/10.1080/00049158.2010.10676314
]Search in Google Scholar
[
Rencoret J, Gutiérrez A, del Río JC (2007) Lipid and lignin composition of woods from different eucalypt species. Holzforschung 61:165–174. https://doi.org/10.1515/HF.2007.030
]Search in Google Scholar
[
Resende RT, Resende MDV, Silva FF, Azevedo CF, Takahashi EK, Silva-Junior OB, Grattapaglia D (2017) Assessing the expected response to genomic selection of individuals and families in Eucalyptus breeding with an additive-dominant model. Heredity 119:245-255. https://doi.org/10.1038/hdy.2017.37
]Search in Google Scholar
[
Rodrigues J, Faix O, Pereira H (1999) Improvement of the acetylbromide method for lignin determination within large scale screening programmes, Holz Roh Werkst. 57: 341–345.
]Search in Google Scholar
[
Sellami MH, Pulvento C, Lavini A (2021) Selection of suitable genotypes of lentil (Lens culinaris Medik.) under rainfed conditions in south Italy using multi-trait stability index (MTSI). Agronomy 11:1807. https://doi.org/10.3390/agronomy11091807
]Search in Google Scholar
[
Silva JC, Borralho NM, Araújo JA, Vaillancourt RE, Potts BM (2009) Genetic parameters for growth, wood density and pulp yield in Eucalyptus globulus. Tree Genetics & Genomes 5:291-305. https://doi.org/10.1007/s11295-008-0174-9
]Search in Google Scholar
[
Silva PHMD, Marco M, Alvares CA, Lee D, Moraes MLTD, Paula RCD (2019) Selection of Eucalyptus grandis families across contrasting environmental conditions. Crop Breeding and Applied Biotechnology 19:47-54. https://doi.org/10.1590/1984-70332019v19n1a07
]Search in Google Scholar
[
Singamsetti A, Shahi JP, Zaidi PH, Seetharam K, Vinayan MT, Kumar M, Singla S, Shikha K, Madankar K (2021) Genotype× environment interaction and selection of maize (Zea mays L.) hybrids across moisture regimes. Field Crops Research 270:108224. https://doi.org/10.1016/j.fcr.2021.108224
]Search in Google Scholar
[
Stackpole DJ, Vaillancourt RE, Alves A, Rodrigues J, Potts BM (2011) Genetic variation in the chemical components of Eucalyptus globulus wood. G3: Genes Genomes Genetics 1:151-159. https://doi.org/10.1534/g3.111.000372
]Search in Google Scholar
[
Stackpole DJ, Vaillancourt RE, Downes GM, Harwood CE, Potts BM (2010) Genetic control of kraft pulp yield in Eucalyptus globulus. Canadian Journal of Forest Research 40:917-927. https://doi.org/10.1139/X10-035
]Search in Google Scholar
[
Tan B, Grattapaglia D, Martins GS, Ferreira KZ, Sundberg B, Ingvarsson PK (2017) Evaluating the accuracy of genomic prediction of growth and wood traits in two Eucalyptus species and their F1 hybrids. BMC plant boilogy 17:1-15. https://doi.org/10.1186/s12870-017-1059-6
]Search in Google Scholar
[
Team RC (2020) R Core Team R: a language and environment for statistical computing. Foundation for Statistical Computing, Austria, Vienna.
]Search in Google Scholar
[
Thumma BR, Southerton SG, Bell JC, Owen JV, Henery ML, Moran GF (2010) Quantitative trait locus (QTL) analysis of wood quality traits in Eucalyptus ni-tens. Tree Genetics & Genomes 6:305-317. https://doi.org/10.1007/s11295-009-0250-9
]Search in Google Scholar
[
Updegraff DM (1969) Semi micro determination of cellulose in biological materials. Anal. Biochem. 32 (3): 420–424.
]Search in Google Scholar
[
Van Duong D, Hasegawa M, Matsumura J (2019) The relations of fiber length, wood density, and compressive strength to ultrasonic wave velocity within stem of Melia azedarach. Journal of the Indian Academy of Wood Science 16:1-8. https://doi.org/10.1007/s13196-018-0227-0
]Search in Google Scholar
[
Varghese M, Harwood CE, Hegde R, Ravi N (2008) Evaluation of provenances of Eucalyptus camaldulensis and clones of E. camaldulensis and E. tereticornis at contrasting sites in southern India. Silvae Genetica 57:170-179. https://doi.org/10.1515/sg-2008-0026
]Search in Google Scholar
[
Volker PW, Potts BM, Borralho NM (2008) Genetic parameters of intra-and inter-specific hybrids of Eucalyptus globulus and E. nitens. Tree Genetics & Genomes 4:445-460. https://doi.org/10.1007/s11295-007-0122-0
]Search in Google Scholar
[
Weng Q, He X, Li F, Li M, Yu X, Shi J, Gan S (2014) Hybridizing ability and heterosis between Eucalyptus urophylla and E. tereticornis for growth and wood density over two environments. Silvae Genetica 63:15–24. https://doi.org/10.1515/sg-2014-0003
]Search in Google Scholar
[
Yan W, Kang MS (2002) GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC press, Boca Raton, FL. https://doi.org/10.1201/9781420040371
]Search in Google Scholar
[
Yang H, Weng Q, Li F, Zhou C, Li M, Chen S, Ji H, Gan S (2018) Genotypic variation and genotype-by-environment interactions in growth and wood properties in a cloned Eucalyptus urophylla× E. tereticornis family in Southern China. Forest Science. 64:225-232. https://doi.org/10.1093/forsci/fxx011
]Search in Google Scholar
[
Zhang Y, Wang X (2021) Geographical spatial distribution and productivity dynamic change of eucalyptus plantations in China. Scientific Reports 11:19764. https://doi.org/10.1038/s41598-021-97089-7
]Search in Google Scholar
[
Zuffo AM, Steiner F, Aguilera JG, Teodoro PE, Teodoro LPR, Busch A (2020) Multi‐ trait stability index: A tool for simultaneous selection of soya bean geno-types in drought and saline stress. Journal of Agronomy and Crop Science 206:815-822. https://doi.org/10.1111/jac.12409
]Search in Google Scholar