1. bookVolume 67 (2018): Issue 1 (February 2018)
Journal Details
License
Format
Journal
eISSN
2509-8934
First Published
22 Feb 2016
Publication timeframe
1 time per year
Languages
English
Open Access

Cloning and Molecular Evolution Analysis of NBS Class Resistance Gene Analogs in Black Bamboo (Phyllostachys nigra)

Published Online: 13 Dec 2018
Volume & Issue: Volume 67 (2018) - Issue 1 (February 2018)
Page range: 117 - 123
Journal Details
License
Format
Journal
eISSN
2509-8934
First Published
22 Feb 2016
Publication timeframe
1 time per year
Languages
English
Abstract

The nucleotide binding site (NBS) domain sequences were iso­lated from genomic DNA in black bamboo, using the degenerate primer designed according to the conserved motifs of the NBS resistance gene. The expected size of the PCR product was about 700 bp. Among 55 positive clones, the amino acid sequence alignment identified 33 black bamboo resistance gene analogs (RGAs) that contain the NBS conserved motifs. All of the 33 RGAs ORFs were constructed in an NJ (Neighbor-joi­ning) tree, and divided into 10 groups. This analysis demonstrated the diversity of the NBS class RGA in black bamboo. The maximum likelihood estimates of various evolutionary models were analyzed; the result showed that 2 groups with a total of 10 sequences and 12 sites demonstrated statistically significant positive selection. Most of the positive selected sites were not located in the NBS conserved motifs. Two groups of gene conversion events had been discovered, which provide a mate­rial basis and research direction in isolating black bamboo R genes.

Keywords

Aarts N, Metz M, Holub E, Staskawicz BJ, Daniels MJ, Parker JE (1998) Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis[J]. Proc Natl Acad Sci USA 95(17):10306-10311. https://doi.org/10.1073/pnas.95.17.1030610.1073/pnas.95.17.10306215049707643Open DOISearch in Google Scholar

Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J, Stas­kawicz BJ (1994) RPS2 of Arabidopsis thaliana: a leuine-rich repeat class of plant disease resistance genes[J]. Science 265(5180):1856-1860 https://doi.org/10.1126/science.809121010.1126/.8091210Open DOISearch in Google Scholar

Deyoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense[J]. Nature Immunol 7(12):1243−1249 https://doi.org/10.1038/ni141010.1038/ni1410197315317110940Open DOISearch in Google Scholar

Gregory B Martin, Adam J Bogdanove, Guido Sessa (2003) Understanding the functions of plant disease resistance proteins s[J]. Annual review of plant biology 54:23-61 https://doi.org/10.1146/annurev.arplant.54.031902.13503510.1146/annurev.arplant.54.031902.13503514502984Open DOISearch in Google Scholar

Hanan Sela, Jianping Cheng, Yan Jun, Eviatar Nevo, and Tzion Fahima. (2009) Di­vergent diversity patterns of NBS and LRR domains of resistance gene ana­logs in wild emmer wheat populations[J]. Genome 52:557-565 https://doi.org/10.1139/g09-03010.1139/g09-03019483774Open DOISearch in Google Scholar

He Chao-ying, Zhang Zhi-yong, Chen Shou-yi (2001) Cloning and analysis of a disease resistance gene homolog from soybean[J]. Chin Sci Bull 46(12):1017−1021Search in Google Scholar

Huang J, Zhang H(2004) Development of Nucleotide Sequence Analysis Soft­ware Based on Windows[J]. Bioinformatiocs (01):13-17Search in Google Scholar

Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: Evo­lution and utilization[J]. Annu Rev Phytopathol 39:285-312 https://doi.org/10.1146/annurev.phyto.39.1.28510.1146/annurev.phyto.39.1.28511701867Open DOISearch in Google Scholar

Ji Jun, Yang Si-hai, Tian Da-cheng (2007) Patterns of positive selection and gene conversion in the complete disease resistance genes of rice[J]. Scientia Ag­ricultura Sinica 40(9):1856-1863Search in Google Scholar

Dangl JL, Jones JD (2001)Plant pathogens and integrated defense responses to infection[J]. Nature 411(6839):826-833 https://doi.org/10.1038/3508116110.1038/3508116111459065Open DOISearch in Google Scholar

Joseph Sambrook, David W Russell (2001)Molecular cloning: a laboratory manu­al (3rd ed)[M]. Cold Spring Harbor Laboratory PressSearch in Google Scholar

Joshi RK, Nayak S (2013) Perspectives of genomic diversification and molecular recombination towards R-gene evolution in plants[J]. Physiol Mol Biol Plants 19(1):1-9. https://doi.org/10.1007/s12298-012-0138-210.1007/s12298-012-0138-2355069024381433Open DOISearch in Google Scholar

Johal GS, Briggs SP (1992) Reductase activity encoded by the Hm1 disease resis­tance gene in maize[J]. Science 258(5084): 985-987 . https://doi.org/10.1126/science.135964210.1126/.1359642Open DOISearch in Google Scholar

Kanazin V, Marek LF, Shoemaker RC (1996) Resistance gene analogs are con­served and clustered in soybean [J]. Proc Natl Acad Sci USA 93(21):11746- 11750. https://doi.org/10.1073/pnas.93.21.1174610.1073/pnas.93.21.11746381298876208Open DOISearch in Google Scholar

Kimura M, Ota T (1974) On some principles governing molecular evolution[J]. Proc Natl Acad Sci 71(7):2848-2852. https://doi.org/10.1073/pnas.71.7.284810.1073/pnas.71.7.2848Open DOISearch in Google Scholar

Lawrence GJ, Finnegan EJ, Aylliffe MA, Ellis JG (1995) The L6 gene for flax rust re­sistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N[J]. Plant Cell 7(8):1195-1206 https://doi.org/10.1105/tpc.7.8.119510.1105/tpc.7.8.1195Open DOISearch in Google Scholar

Liu Jin-ling, Liu Xiong-lun, Dai Liang-ying, Wang G (2007) Recent Progress in Elu­cidating the Structure, Function and Evolution of Disease Resistance Genes in Plants[J]. Journal of Genetics and Genomics 34(9):765-776 https://doi.org/10.1016/s1673-8527(07)60087-310.1016/s1673-8527(07)60087-3Open DOISearch in Google Scholar

Meyers BC, Dickerman AW, Michlmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an an­cient and diverse protein family within the nucleotide-binding superfami­ly[J]. Plant J 20(3):317-332. https://doi.org/10.1046/j.1365-313x.1999.t01-1-00606.x10.1046/j.1365-313x.1999.t01-1-00606.x10571892Open DOISearch in Google Scholar

Mondragón-Palomino M, Gaut BS (2005) Gene conversion and the evolution of three leucine-rich repeat gene families in Arabidopsis thaliana[J]. Molecular Biology and Evolution 22(12):2444-2456 https://doi.org/10.1093/molbev/msi24110.1093/molbev/msi24116120808Open DOISearch in Google Scholar

Mondragón-Palomino M, Meyers BC, Michelmore RW, Gaut BS (2002) Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana[J]. Genome Research 12(9):1305-1315. https://doi.org/10.1101/gr.15940210.1101/gr.15940218665712213767Open DOISearch in Google Scholar

Nei M, Kumar S (2000) Molecular evolution and phylogenetics[M]. NewYork: Ox­ford UniversitySearch in Google Scholar

Pan Q, Wendel J, and Fluhr R (2000) Divergent evolution of plant NBS-LRR resis­tance gene homologues in dicot and cereal genomes[J]. J Mol Evol 50(3):203-213. https://doi.org/10.1007/s00239991002310.1007/s00239991002310754062Open DOISearch in Google Scholar

Naresh M, Krishna Raddy Anand C Reddy, B Lavanya, D. C. Lakshmana Reddy, K. Madhavi Press Inc Parniske M, Jones JD (1999) Recombination between di­verged clusters of the tomato Cf-9 plant disease resistance gene family[J]. Proc Natl Acad Sci USA 11; 96(10):5850-5855 https://doi.org/10.1073/pnas.96.10.585010.1073/pnas.96.10.58502194910318973Open DOISearch in Google Scholar

Reddy P(2017), Isolation, characterization and genetic diversity of NBS-LRR class disease-resistant gene analogs in multiple virus resistant line of chilli (Cap­sicum annuum L.). Biotech 7: 114. https://doi.org/10.1007/s13205-017-0720-y10.1007/s13205-017-0720-y545135428567626Open DOISearch in Google Scholar

Reddy AC, Venkat S, Singh TH, Aawath C, Reddy KM, Reddy LDC(2015) Isolation, characterization and evolution of NBS-LRR encoding disease-resistance gene analogs in eggplant against bacterial wilt. Eur J Plant Pathol 143(3): 417-426. https://doi.org/10.1007/s10658-015-0693-910.1007/s10658-015-0693-9Open DOISearch in Google Scholar

Swanson, W. J., R. Nielsen, and Q. Yang (2003) Pervasive adaptive evolution in mammalian fertilization proteins[J]. Mol. Biol. Evol 20:18-20 https://doi.org/10.1093/oxfordjournals.molbev.a00423310.1093/oxfordjournals.molbev.a004233Open DOISearch in Google Scholar

Tarr DE, Alexander HM (2009) TIR-NBS-LRR genes are rare in monocots: evidence from diverse monocot orders[J]. BMC Research Notes 2:197 https://doi.org/10.1186/1756-0500-2-19710.1186/1756-0500-2-197Open DOISearch in Google Scholar

Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to toll and the in­terleukin-1 receptor[J]. Cell 78(6):1101-1115 https://doi.org/10.1016/0092-8674(94)90283-610.1016/0092-8674(94)90283-6Open DOISearch in Google Scholar

Wu Zheng-yi, Peter H Raven (2006) Flora of China Vol 22 (Poaceae)[M]. Science Press (Beijing) and Missouri Botanical Garden Press (St. Louis)Search in Google Scholar

Xu Mei-qing, Dai Yu-cheng, Fan Shao-hu, Jin Li-xin, Lv Quan, Tian Guo-zhong, Wang Lai-fa (2006) Records of bamboo diseases and the taxonomy of their pathogens in China (I)[J]. Forest Research 19(6):692-699Search in Google Scholar

Yang Z, R Nielsen, N Goldman, and AM. Pedersen (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites[J]. Genet­ics 155:431-44910.1093/genetics/155.1.431146108810790415Search in Google Scholar

Yin YX, Ou ZY, Xu Y, Zhou R, Xia HM (2014) Phylogenetic analysis of the VP1 gene of Enterovirus 71 in Guangzhou during the high occurrence period of 2008[J]. Virus Genes.48(3):538-542. https://doi.org/10.1007/s11262-014-1046-z10.1007/s11262-014-1046-z24515837Open DOISearch in Google Scholar

Yuan Gao, Li Tian, Song Qin (2008) Positive selection in plant evolution[J]. Chi­nese Bulletin of Botan 25(4):401-406Search in Google Scholar

Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang ZX, Kono I, Kurata N, Yano M, Iwata N, Sasaki T (1998) Expression of Xa1, a bacterial blight-resistance gene in rice is induced by bacterial inoculation[J]. Proc Natl Acad Sci USA 95(4):1663-1668. https://doi.org/10.1073/pnas.95.4.166310.1073/pnas.95.4.1663191409465073Open DOISearch in Google Scholar

Zhang E, Guo X, Meng Z, et al.(2016) Construction, expression, and characteriza­tion of Arabidopsis thaliana, 4CL, and Arachis hypogaea RS, fusion gene 4CL::RS, in Escherichia coli[J]. World Journal of Microbiology & Biotechnolo­gy 31(9):1-7.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo