This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Ferry F.R. “Indonesia’s healthcare landscape: embracing innovation in the new health regime”, Current Medical Research & Opinion 40 (6), pp. 1 – 8, 2024. DOI: 10.1080/03007995.2024.2349732Search in Google Scholar
Department of Economic and Social Affairs, “Population and vital statistics report”, United Nations, New York, United State, Series A, Vol. LXXIII, 2021.Search in Google Scholar
Bajpai, A.K., Bajpai, J., Saini, R.K., Agrawal, P., Tiwari A. “Smart biomaterials devices, polymers in biomedical sciences”, Taylor & Francis Group: CRC Press, pp. 1 – 2, 2016. 978-ISBN: 1-4987-0698-8Search in Google Scholar
Varacallo, M., Herzog, L., Toossi, N., Johanson, N. “Ten-year trends and independent risk factors for unplanned readmission following elective total joint arthroplasty at a large urban academic hospital”, The Journal of Arthroplasty 32, (6), pp. 1739 – 1746, 2016. DOI: 10.1016/j.arth.2016.12.035Search in Google Scholar
Niinomi, M. “Mechanical biocompatibilities of titanium alloys for biomedical application”, Journal of the Mechanical Behaviour of Biomedical Materials 1 (1), pp. 30 – 42, 2008. DOI: 10.1016/j.jmbbm.2007.07.001Search in Google Scholar
Murr, L. E., et al. “Microstructure and mechanical behaviour of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications”, Journal of the Mechanical Behaviour of Biomedical Materials 2 (1), pp. 20 – 32, 2009. DOI: 10.1016/j.jmbbm.2008.05.004Search in Google Scholar
Skublova, L., Skorik, V., Mrazikova, R., Hadzima, B. “Corrosion resistance of Ti-6Al-4V titanium alloy with modified surfaces”, Komunikacie 12, pp. 80 - 84, 2010. DOI: 10.26552/com.C.2010.4.80-84Search in Google Scholar
Gallego, et al. “Microstructural characterization of Ti-6Al-7Nb alloy severe plastic deformation”, Materials Research 5, pp. 786 – 791, 2012. DOI: 10.1590/S1516-14392012005000100Search in Google Scholar
Okazaki, Y., Mori, J. “Mechanical performance of artificial hip stems manufactured by hot forging and selective laser melting using biocompatible Ti-15Zr-4Nb alloy”, Materials MDPI 14, (4), pp. 732, 2021. DOI: 10.3390/ma14040732Search in Google Scholar
Fellah, M., Assala, O., Labaïz, M., Dekhil, L., Iost, A. “Friction and wear behaviour of Ti-6Al-7Nb biomaterial alloy”, Journal of Biomaterials and Nanobiotechnology 4 (1), pp. 374 – 384, 2013. DOI: 10.4236/jbnb.2013.44047Search in Google Scholar
Lin, C.W., Ju, C.P., Chern Lin, J.H. “Comparison among mechanical properties of investment-cast c.p. Ti, Ti-6Al-7Nb and Ti-15Mo-1Bi alloys”, Materials Transactions 45, (10), pp. 3028 – 3032, 2004. DOI: 10.2320/matertrans.45.3028Search in Google Scholar
Koizumi, H., Ishii, T., Okazaki, T., Kaketani, M. “Castability and mechanical properties of Ti-15Mo-5Zr-3Al alloy in dental casting”, Journal of Oral Science 60 (2), pp. 285 – 292, 2018. DOI: 10.2334/josnusd.17-0280Search in Google Scholar
García-González, M. et al. “Optimized planning and evaluation of dental implant fatigue testing: a specific software application”, Biology (Basel) 9 (11), pp. 372, 2020. DOI: 10.3390/biology9110372Search in Google Scholar
Castillo, E. et al. “Specimen length effect on parameter estimation in modelling fatigue strenght by Weibull distribution”, International Journal of Fatigue 28 (9), pp. 1047 – 1058, 2006. DOI: 10.1016/j.ijfatigue.2005.11.006Search in Google Scholar
Fernández-Canteli, A., Przybilla, C., Nogal, M., López Aenlle, M., Castillo, E. “ProFatigue: a software program for probabilistic assessment of experimental fatigue data sets”, Procedia Engineering, XVII International Colloquim on Mechanical Fatigue of Metals (ICMFM17) 74, pp. 236 – 241, 2014. DOI: 10.1016/j.proeng.2014.06.255Search in Google Scholar
Castillo, E., Fernández-Canteli, A.”A unified statistical methodology for modelling fatigue damage”, 1st ed. Dordrecht Springer Netherlands, 2009. ISBN: 978-1-4020-9181-0, DOI: 10.1007/978-1-4020-9182-7Search in Google Scholar
da Silva, L.F.R.C. “Monotonic and fatigue behaviour of double shear bolted joints: experimental and numerical studies”, Master, Department of Engineering. University of Porto, 2020.Search in Google Scholar
Muniz-Calvente, M., de Jesus, A.M.P, Correia, J.A.F.O., Fernández-Canteli, A. “A methodology for probabilistic prediction of fatigue crack initiation taking into account the scale effect”, Engineering Fracture Mechanics 185, pp. 101 – 113, 2017. DOI: 10.1016/j.engfracmech.2017.04.014Search in Google Scholar
Castillo, E., Muniz-Calvente, M., Fernández-Canteli, A., Blasón, S. “Fatigue assessment strategy using bayesian techniques”, Materials 12, (9), pp. 3239, 2019. DOI: 10.3390/ma12193239Search in Google Scholar
Bonfante, E. A., Coelho, P. G. “A critical perspective on mechanical testing of implants and prostheses”, Advance in Dental Research 28 (1), pp. 18 – 27, 2016. DOI: 10.1177.0022034515624445Search in Google Scholar
DePuy Synthes, “CORAIL hip system catalogue”, Johnson & Johnson, France, 2016.Search in Google Scholar
Safitri, P.N., et al. “Stem geometry recommendation for total hip replacement planning using computed tomography data analysis”, Journal of Biomimetics, Biomaterials and Biomedical Engineering 55, pp. 23 – 34, 2022. DOI: 10.4028/p-kz8jrpSearch in Google Scholar
Qurashi, S., et al. “Stand up! Are normal weight-bearing forces sufficient for a 12/14 Morse taper locking in total hip arthroplasty? “, Hip International 32, (2), pp. 231 – 236, 2022. DOI: 10.1177/1120700020967000Search in Google Scholar
International Standard, “Determination of endurance properties and performance of stemmed femoral components”, Switzerland, ISO 7206-4, 3rd ed, 2010.Search in Google Scholar
Zafer Senalp, A., Kayabasi, O., Kurtaran, H. “Static, dynamic and fatigue behaviour of newly designed stem shapes for hip prosthesis using finite element analysis”, Material & Design 28 (5), pp. 1577 – 1583, 2007. DOI: 10.1016/j.matdes.2006.02.015Search in Google Scholar
Lagoda, A., Nieslony, A. “Stress Analysis of Dental Implant Inserted in the Mandible”, Strojnícky časopis – Journal of Mechanical Engineering 68 (1), pp. 25 – 32, 2018. DOI: 10.2478/scjme-2018-0003Search in Google Scholar
Mahmoud, A., Wakabayashi, N., Takahashi, H., Ohyama, T. “Deflection fatigue of Ti-6Al-7Nb, Co-Cr, and gold alloy cast clasps”, The Journal of Prosthetic Densitry 93 (2), pp. 183 – 188, 2005. DOI: 10.1016/j.prosdent.2004.11.011Search in Google Scholar
Bousnane, T., Benbarek, S., Sahli, A., Serier, B., Bouiadjra, B.A.B. “Damage of the bone-cement interface in finite element analyses of cemented orhopaedic implants”, Periodica Polytechnica, Mechanical Engineering 62 (2), pp. 173 – 178, 2018. DOI: 10.3311/PPme.11851Search in Google Scholar
Babić, M., Verić, O., Božić, Ž., Sušić, A. “Finite element modelling and fatigue life assessment of a cemented total hip prosthesis based on 3D scanning”, Engineering Failure Analysis 113, 104536, 2020. DOI: 10.1016/j.engfailanal.2020.104536Search in Google Scholar
Jonathan, R.T.J., Browne, M., Lennon, A.B., Patrick, J.P., Taylor, M. “Cement mantle fatigue failure in total hip replacement: experimental and computational testing”, Journal of Biomechanics 40 (7), pp. 1525 – 1533, 2006. DOI: 10.1016/j.jbiomech.2006.07.029Search in Google Scholar
Šćepanović, M., et al. “Finite element analysis in defining the optimal shape and safety factor of retentive clasp arms of a removable partial denture”, Vojnosanitetski pregled, Military-medical and pharmaceutical review 70 (11), pp. 999 – 1005, 2013. DOI: 10.2298/VSP110526021SSearch in Google Scholar
Heidi-Lynn, P., Bürgi, M., Wyss, Urs P. “Hip stem fatigue test prediction”, International Journal of Fatigue 31 (5), pp. 894 – 905, 2009. DOI: 10.1016/j.ijfatigue.2008.10.005Search in Google Scholar
Browell, R. “Calculating and displaying fatigue results on ANSYS”, Development Engineer, ANSYS Inc, 2006.Search in Google Scholar
Joshi, T., Sharma, R., Mittal, V.K., Gupta, V., Krishan, G. “Dynamic fatigue behaviour of hip joints under patient specific loadings”, International Journal of Automotive and Mechanical Engineering 19 (3), pp. 10014 – 10027, 2022. DOI: 0.15292/ijame.19.3. 2022.13.0773Search in Google Scholar
Taylor, L., and ASM international Handbook committee, “Metallography Structures and Phase Diagrams”, Metals Handbook 8th ed. American Society for Metals, 1973.Search in Google Scholar
Doi, H., Yoneyama, T., Kobayashi, E., Hanawa, T. “Fatigue property of Ti-5Al-13Ta Alloy Dental Castings in 0,9% NaCl Solution”, Material Transactions 47 (9), pp. 2444 – 2447, 2006. DOI: 10.2320/matertrans.47.2444Search in Google Scholar
Polyakova, V.V., Anumalasetty, V.N., Semenova, I.P., Valiev, R.Z. “Influence of UFG structure formation on mechanical and fatigue properties in Ti-6Al-7Nb alloy”, In: IOP Conference series, Material Science and Engineering 6th International, France, pp 24, 2014. DOI: 10.1088/1757-899X/63/1/012162.Search in Google Scholar
Nishijima, S. “Statistical analysis of fatigue test data”, Journal of the Society Material Science Japan 29 (316), pp. 24 – 29, 1980. DOI: 10.2472/jsms.29.24Search in Google Scholar
Kasuga, J., Yoneyama, T., Kobayashi, E., Hanawa, T., Doi, H. “Fatigue property of super-elastic Ti-Ni alloy dental casting”, Materials Transactions 46 (7), pp. 1555 – 1563, 2005. DOI: 10.2320/matertrans.46.1555Search in Google Scholar
Stanislav, S., Miarka, P., Sergio, B., Fernández-Canteli, A. “Evaluation of fatigue properties of S355 J2 and S355 J0 by using ProFatigue software”, Mechanical Fatigue of Metals, Springer Nature Switzerland, pp. 213 – 219, 2019. DOI: 10.1007/978-3-030-13980-3_28Search in Google Scholar
Giza, S., dos Santos, S.V., Ueki, M.M., Bertoni, F., Strohaecker, T.R. “Case study and analysis of fatigue failure in a THA stem”, Engineering Failure Analysis 28, pp. 166 – 175, 2013. DOI: 10.1016/j.engfailanal.2012.10.011Search in Google Scholar
Giza, S., et al. “Design aspects involved in a cemented THA stem failure case”, Engineering Failure Analysis, 16 (1), pp. 512 – 520, 2009. DOI: 10.1016/j.engfailanal.2008.06.016Search in Google Scholar
Guzmán, M.et al. “Finite element assessment of a hybrid proposal for hip Stem, from a standardized base and different activities”, Applied Sciences 12 (16), pp. 7963, 2022. DOI: 10.3390/app12167963Search in Google Scholar
Hernandez-Rodriguez, M.A.L., Ortega-Saenz, J.A., Contreras-Hernandez, G.R. “Failure analysis of a total hip prosthesis implanted in active patient”, Journal of the Mechanical Behaviour of Biomedical Materials 3, (8), pp. 619 – 622, 2010. DOI: 10.1016/j.jmbbm.2010.06.004Search in Google Scholar
Mierzejewska, Ż., Oksiuta, Z. “Failure analysis of a femoral hip stem made of stainless steel after a short time of exposure”, Acta Mechanica et Automatica 8 (3), pp. 146 – 150, 2014. DOI: 10.2478/ama-2014-0026Search in Google Scholar
Gedeon, M. “Mean stress and alternating stress”, Technical TIDBITS Materion Brush Inc, 1, (63), 2014. Available at: https://materion.de.com/-/media/files/alloy/newsletters/technical-tidbits/issue-no-63---mean-stress-and-alternating-stress.pdf [Accessed: 18 November 2022]Search in Google Scholar
Sutiyoko, S., Mahardika, M., Syamsudin, A. “Prediction of shrinkage porosity in femoral stem of titanium investment casting”, Archives of Foundry Engineering. 16 (4), pp. 157 – 162, 2016. DOI:10.1515/afe-2016-0102Search in Google Scholar
Leopold, G., Nadot, Y., Billaudeau, T., Mendez, J. “Influence of artificial and casting defects on fatigue strength of moulded components in Ti-6Al-4V alloy”, Fatigue & Fracture of Engineering Material & Structure 38 (9), pp. 1026 – 1041, 2015. DOI: 10.1111/ffe.12326Search in Google Scholar
Al Zoubi, N.F., Tarlochan, F., Mehboob, H. “Mechanical and fatigue behaviour of cellular structure Ti-6Al-4V alloy femoral stems: A finite element analysis”, Applied Sciences 12 (9), pp. 4197, 2022. DOI: 10.3390/app12094197Search in Google Scholar
Delikanli, Y.E., Kayacan, M.C. “Design, manufacture and fatigue analysis of lightweight hip implants”, Journal of Applied Biomaterials & Functional Materials 17 (2), 2019. DOI: 10.1177/228080019836830Search in Google Scholar
Taraka, H., Pardeep, P., Pankaj, B., Anilkumar, D., Indira, B., Aadarsh, K. “Friction stir welding tool life assessment through fatigue analysis”, Strojnícky časopis – Journal of Mechanical Engineering 73 (2), pp. 163 – 180, 2023. DOI: 10.2478/scjme-2023-0031Search in Google Scholar