Open Access

Waste disposal sites as sources of mercury in the atmosphere in the coastal zone of the Gulf of Gdańsk (southern Baltic Sea)

, ,  and   
Apr 12, 2013

Cite
Download Cover

[1] Bełdowska M., Falkowska L. & Marks R. (2003). Total gaseous mercury over the coastal zone of the Gulf of Gdańsk. Oceanological and Hydrobiological Studies. 32, 3–18. Search in Google Scholar

[2] Bełdowska M., Falkowska L. & Lewndowska A. (2006a). Airborne trace metals (Hg, Cd, Pb, Zn) of the coastal region, Gulf of Gdańsk. Oceanological and Hydrobiological Studies. 35, 159–169. Search in Google Scholar

[3] Bełdowska M., Falkowska L., Siudek P. & Otręba M., (2006b). Influence of building activities and high-temperature processes on the concentration of gaseousmercury in air. Environment Protection Engineering. 32(3), 31–38. Search in Google Scholar

[4] Bełdowska M., Falkowska L., Siudek P., Gajecka A., Lewandowska A., Rybka A. & Zgrundo A. (2007). Atmospheric Mercury over the coastal zone of the Gulf of Gdańsk. Oceanological and Hydrobiological Studies. Gdańsk. 34, 9–18. Search in Google Scholar

[5] Bełdowska M. & Falkowska L. (2007). Exchange of mercury between air and seawater in day/night cycle, during summer and winter. Oceanological and Hydrobiological Studies. Gdańsk. 34, 51–68. Search in Google Scholar

[6] Bełdowska M., Zawalich K., Falkowska L., Siudek P. & Magulski R. (2008). Total gaseous mercury in the area of southern Baltic and in the coastal zone of the Gulf of Gdansk during spring and autumn. Environment Protection Engineering. Wroclaw. 34(4), 139–144. Search in Google Scholar

[7] Biziuk M. (2001). Pestycydy. Występowanie, oznaczanie i unieszkodliwianie. Wyd. Naukowo Techniczne Warszawa.. 229–263. Search in Google Scholar

[8] Carpi A. & Lindberg S.E. (1998). Application of a teflon dynamic flux chamber for quantifying soil mercury flux: Tests and results over background soil. Atmospheric Environment. 32, 873–882. http://dx.doi.org/10.1016/S1352-2310(97)00133-710.1016/S1352-2310(97)00133-7 Search in Google Scholar

[9] Ebinghaus R., Turner R.R., Lacerda L. D., Vasiliev O. & Salomons W. (1999). Mercury Contaminated Sites. Characterization, Risk Assessment and Remediation. Springer — Verlag. Berlin Heidelberg New York. ISBN 3-540-63731-1 10.1007/978-3-662-03754-6 Search in Google Scholar

[10] Falkowska L., Lewandowska A. & Magoński J. (2005). Transfer of chemical substances through the Marine water — atmosphere boundary layer. Archives of Environmental Protection. 31(3), 5–14. Search in Google Scholar

[11] Gworek B. & Rateńska J. (2009). Mercury migration in pattern air-soil-plant. Ochrona Środowiska i Zasobów Naturalnych. Warszawa. 41, 614–623. Search in Google Scholar

[12] Hławiczka S. (2008). Mercury in the atmospheric environment. IPIŚ PAN. Zabrze. 73, 158 Search in Google Scholar

[13] Holmes C.D., Jacob D.J. & Yang X., (2006). Global lifetime of elemental mercury against oxidation by atomic bromine in the free troposphere. Geophysical Research Letters. 33, 1–5. DOI:10.1029/2006GL027176. 10.1029/2006GL027176 Search in Google Scholar

[14] Ignatowicz K. (2008a). Pesticide and heavy metals concentrations in natural water near graveyard in Podlasie Region. Environmental Engineering, The International Conference May 22–23, Faculty of Environmental Engineering Vilnius Gediminas Technical University. 163–168. Search in Google Scholar

[15] Ignatowicz K. (2008b). Pesticide waste burials in the Area of Podlaskie Provence. Środkowo-Pomorskie Towarzystwo Naukowe Ochrony Środowiska. Koszalin. 10, 545–555. Search in Google Scholar

[16] Jackson T.A., (1998). Mercury in aquatic ekosystem. IN: Metal metabolizm in Aquatic Environment. Chapman & Hall. London. 178–249. Search in Google Scholar

[17] Kabata-Pendias A. (1992). —Biogeochemia rtęci w różnych środowiskach. Rtęć w środowisku -problemy ekologiczne i metodyczne. Ossolineum. 7–18. Search in Google Scholar

[18] Kabata-Pendias A. & Pendias H. (1999). Biogeochemia pierwiastków śladowych. Wydawnictwo Naukowe PWN. Warszawa. 2, 170–183. Search in Google Scholar

[19] Kabata-Pendias A. (2011). Trace Elements in soils and Plants. CRC Press Taylor and Francis Group LLC. 520. Search in Google Scholar

[20] Klojzy-Kaczmarek B. & Mazurek J. (2008). Research on Mercury content in selected petroleum deposits of Carpathian region (Poland). Polityka Energetyczna. 11, 211–217. Search in Google Scholar

[21] Klojzy-Kaczmarek B. & Mazurek J. (2010). Mercury In soils fund In the vicinity of selected coal mine waste disposal sites. Polityka Energetyczna. 13, 245–251. Search in Google Scholar

[22] Kluska M., Chrząścik I. & Szymalska M. (2007). Evaluation of Mercury content in water precipitation In the area of City Siedlce by isotachophoresis method. Oceanological and Hydrobiological Studies. Gdańsk. 34, 31–38. Search in Google Scholar

[23] Kopeć M. & Gondek K. (2009). Zawartość rtęci w roślinach górskiego użytku zielonego (Czarny Potok) po 40 latach zróżnicowanego nawożenia mineralnego. Inżynieria Ekologiczna. 21. Search in Google Scholar

[24] Leśniewska E., Szynkowska M.I. & Paryjczak T. (2009). Main Sources of Mercury In Human Organisms not Exposed Professionally. Rocznik Ochrona Środowiska. 11, 403–419. Search in Google Scholar

[25] Magulski R., Falkowska L. & Bełdowska M. (2007). Mercury transformations In the seawater In the presence of Cyclotella meneghiniana and Nodularia spumigena. Oceanological and Hydrobiological Studies. Gdańsk. 34, 69–82. Search in Google Scholar

[26] Marks R. & Bełdowska M. (2001). Air-sea exchange of mercury vapor over the Gulf of Gdansk and southern Baltic Sea. Journal of Marine Systems. 27, 315–324. http://dx.doi.org/10.1016/S0924-7963(00)00076-210.1016/S0924-7963(00)00076-2 Search in Google Scholar

[27] Mason R.P., O’Donnell J. & Fitzgerald W.F. (1994). The biogeochemical cycling of mercury in the equatorial Pacific Ocean. Deep-Sea Res. 40, 1897–1924. 10.1016/0967-0637(93)90037-4 Search in Google Scholar

[28] Michalska A. (2010). Analysis of mercury content in the environment in the Silesian Voievodeship. Journal of Ecology and Health. 14, 165–168. Search in Google Scholar

[29] Miklavicic V. (1999). Mercury In the Town if Idrija (Slovenia) after 500 years of Mining and Smelting. Environmental Science. Mercury Contaminated Sites. Heidelberg. 259–269. Search in Google Scholar

[30] Murawiec D., Gajecka A., Bełdowska M. & Falkowska L. (2007). Investigation on Mercury concentration levels In coastal and offshore Walters of the Gdańsk Basin. Oceanological and Hydrobiological Studies. Gdańsk. 34, 83–98. Search in Google Scholar

[31] Pacyna E.G., Pacyna J.M., Fudała J., Strzelecka-Jastrząb E., Hławiczka S. & Panasiuk D. (2006). Mercury emission from anthropogenic sources in Europe in 2000 and their scenarios until 2020. Science Total Environment. 370, 147–156. http://dx.doi.org/10.1016/j.scitotenv.2006.06.02310.1016/j.scitotenv.2006.06.023 Search in Google Scholar

[32] Poissant L & Casimir A. (1998). Water -air and soil-air Exchange rate of Total gaseous mercury measured AT background sites. Atmospheric Environment. 32, 883–893. http://dx.doi.org/10.1016/S1352-2310(97)00132-510.1016/S1352-2310(97)00132-5 Search in Google Scholar

[33] Probst J.L., Messaitfa A., Krempp G. & Behra P. (1999). Fluvial Tranpsorts of Mercury Pollution In the III River Basin (Northeastern France): Portioning Matter and Bottom Sediments. Mercury Contaminated Sites. Heidelberg. 501–520. 10.1007/978-3-662-03754-6_29 Search in Google Scholar

[34] Pyta H., Rosik-Dulewska C. & Czaplicka M. (2009). Speciation of Ambient Mercury in the Upper Silesia Region, Poland. Water Air Soil Pollut. 197, 233–240. http://dx.doi.org/10.1007/s11270-008-9806-910.1007/s11270-008-9806-9 Search in Google Scholar

[35] Rogalski L. & Warmiński K. (2007). Relationship between anthropogenic emission and wet deposition of mercury in european countries. Oceanological and Hydrobiological Studies. Gdansk. 34, 19–30 Search in Google Scholar

[36] Scholtz M.T., Van Heyst B.J. & Schroeder W.H. (2003). Modeling of mercury emissions from background soils. Science of The Total Environment. 304, 195–207 http://dx.doi.org/10.1016/S0048-9697(02)00568-510.1016/S0048-9697(02)00568-5 Search in Google Scholar

[37] Siudek P. (2011). Mercury in the atmosphere over the urbanized zone of the Gulf of Gdansk. Praca doktorska. Uniwersytet Gdański. Gdańsk Ustawa z dnia 31 stycznia 1980 r. o ochronie i kształtowaniu środowiska art. 3. pkt. 5a (Dz. U. Nr 49 z 1994r., poz. 196 z późniejszymi zmianami) Search in Google Scholar

[38] Wangberg I., Schmolke S., Schager P., Munthe J., Ebinghaus R. & Iverfeldt A. (2001). Estimates of air-sea exchange of mercury in the Baltic Sea. Atmospheric Environment. 35, 5477–5484. http://dx.doi.org/10.1016/S1352-2310(01)00246-110.1016/S1352-2310(01)00246-1 Search in Google Scholar

[39] Wołkowicz W. (2010). Ocena wpływu migracji pestycydów chloroorganicznych z wybranych mogilników, zlokalizowanych w różnych warunkach geologicznych, na zanieczyszczenie osadów i wód podziemnych. Przegląd Geologiczny. Warszawa. 58(11), 1087–1097 Search in Google Scholar

[40] Wołkowicz S. (2003). Rekultywacja terenów zdegradowanych — teoria i praktyka. PIG. Warszawa. Search in Google Scholar

[41] Wołkowicz S., Choromański D. & Wołkowicz W. (2003). Badanie wpływu przeterminowanych środków ochrony roślin (mogilników) na środowisko geologiczne (III etap). PIG. Warszawa. 1–15 Search in Google Scholar

Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Chemistry, other, Geosciences, Geosciences, other, Life Sciences, Life Sciences, other