Open Access

Methanogenic microbial communities in sediment from the coastal area of puck bay (Southern Baltic)


Cite

[1] Bange, H.W. (2006). Nitrous oxide and methane in European coastal waters. Estuar. Coast. Shel. Sci. 70, 361–374. DOI:10.1016/j.ecss.2006.05.042. http://dx.doi.org/10.1016/j.ecss.2006.05.04210.1016/j.ecss.2006.05.042 Search in Google Scholar

[2] Bates, B.C. Kundzewicz Z.W. & Wu S. (2008). Climate Change and Water. Palutikof, J.P. (Eds.). Technical Paper of the Intergovernmental Panel on Climate Change, IPCC, Geneva. Search in Google Scholar

[3] Busch, G. Großmann J. Sieber M. & Burkhardt M. (2009). A new and sound technology for biogas from solid waste and biomass. Water, Air, & Soil Pollution: Focus 9, 89–97. http://dx.doi.org/10.1007/s11267-008-9195-510.1007/s11267-008-9195-5 Search in Google Scholar

[4] Doerfert, S.N. Reichlen M. Iyer P. Wang M. & Ferry J.G. (2009). Methanolobus zinderi sp. nov., a methylotrophic methanogen isolated from a deep subsurface coal seam. Int. J. Syst. Evol. Microbiol. 59, 1064–1069. http://dx.doi.org/10.1099/ijs.0.003772-010.1099/ijs.0.003772-019406794 Search in Google Scholar

[5] Edlund A. (2007). Microbial diversity in Baltic Sea sediment. Doctoral dissertation. Swedish Univwersity of Agricultural Science, Uppsala. Search in Google Scholar

[6] Forster, P. Ramaswam V. Artaxo P. Berntsen T. Betts R. Fahey D.W. Haywood J. Lean J. Lowe D.C. Myhre G. Nganga J. Prinn R. Raga G. Schulz M. & Van Dorland M. (2007). Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change, 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Search in Google Scholar

[7] Gitay, H. Suarez A. Watson R.T. & Dooken D.J. (2002). Climate change and biodiversity. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC, Geneva. Search in Google Scholar

[8] Hales, B.A. Edwards C. Ritchie D.A. Hall G. Pickup R.W. & Saunders J.R. (1996). Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl. Environ. Microbiol. 62, 668–675. 10.1128/aem.62.2.668-675.19961678348593069 Search in Google Scholar

[9] Hanako, M. Hideyuki T. Satoshi H. Hiroyuki I. Kohei N. Susumu S. & Yoichi K. (2009). Methanolobus profundi sp. nov., a methylotrophic methanogen isolated from deep subsurface sediments in a natural gas field. Int. J. Syst. Evol. Microbiol. 59, 714–718. DOI 10.1099/ijs.0.001677-0. http://dx.doi.org/10.1099/ijs.0.001677-010.1099/ijs.0.001677-019329594 Search in Google Scholar

[10] Heyer, J. & Berger U. (2000). Methane emission from the Coastal Area in the Southern Baltic Sea. Estuar. Coast. Shelf. Sci. 51, 13–30. DOI:10.1006/ecss.2000.0616. http://dx.doi.org/10.1006/ecss.2000.061610.1006/ecss.2000.0616 Search in Google Scholar

[11] Houghton, J.T. Filho L.G.M. & Griggs D.J. (1997). Stabilization of atmospheric Greenhouse Gases: Physical, biological and socio-economic implication. Maskell (Eds.). Technical Paper of the Intergovernmental Panel on Climate Change, IPCC, Geneva. Search in Google Scholar

[12] Innis, M. A. & Gelfand D.H. (1990). Optimization of PCRs. [in:] PCR Protocols: a Guide to Methods and Applications. Innis, M. A. Gelfand D.H. Sninisky J.J. & White T.J. (eds.). Academic Press, 3–12, San Diego, CA. Search in Google Scholar

[13] IPCC. (2007): Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K & Reisinger, A. (eds.)], IPCC, Geneva, Switzerland. Search in Google Scholar

[14] Jensen, J.B. & Fossing H. (2005). Methane in the seabed sediments of the south-western Baltic Sea. Geophysical Research Abstract. 7. Search in Google Scholar

[15] Jørgensen, B.B. Bang M. & Blackburn T.H. (1990). Anaerobic mineralization in marine sediments from the Baltic Sea-North Sea transition. Marine Ecology Progress Series. 59, 39–54. http://dx.doi.org/10.3354/meps05903910.3354/meps059039 Search in Google Scholar

[16] Judd, A.G. (2003). The global importance and context of methane escape from the seabed. Geo-Mar Lett. 23, 147–154. DOI: 10.1007/s00367-003-0136-z. http://dx.doi.org/10.1007/s00367-003-0136-z10.1007/s00367-003-0136-z Search in Google Scholar

[17] Judd, A.G. (2004). Natural seabed gas seeps as sources of atmospheric methane. Environ. Geol. 46, 988–996. DOI: 10.1007/s00254-004-1083-3. http://dx.doi.org/10.1007/s00254-004-1083-310.1007/s00254-004-1083-3 Search in Google Scholar

[18] Judd, A.G. & Hovland M. (2007). Seabed fluid flow: the impact of geology, biology and the marine environment. Cambridge University Press. 20, pp. 475. 10.1017/CBO9780511535918 Search in Google Scholar

[19] King, G.M. (1990). Dynamics and controls of methane oxidation in a Danish wetland sediment. FEMS Microbiol. Ecol. 74, 309–323. DOI:10.1016/0378-1097(90)90684-I. 10.1016/0378-1097(90)90684-I Search in Google Scholar

[20] Liikanen, A. Silvennoinen H. Karvo A. Rantakokko P. & Martikainen P.J. (2009). Methane and nitrous oxide fluxes in two coastal wetlands in the northeastern Gulf of Bothnia, Baltic Sea. Boreal Env. Res. 14, 351–368. Search in Google Scholar

[21] Liu, H. Ramnarayanan R. & Logan B.E. (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38, 2281–2285. DOI: 10.1021/es034923g. http://dx.doi.org/10.1021/es034923g10.1021/es034923g15112835 Search in Google Scholar

[22] Luton, P.E. Wayne J.M. Sharp R.J. & Riley P.W. (2002). The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiol. 148, 3521–3530. 10.1099/00221287-148-11-352112427943 Search in Google Scholar

[23] Martens, Ch.S. Albert D.B. & Alperin M.J. (1999). Stable isotope trading of anaerobic methane oxidation in the Gassy sediments of Eckernförde Bay, German Baltic Sea. American J. Sci. 299, 589–610. http://dx.doi.org/10.2475/ajs.299.7-9.58910.2475/ajs.299.7-9.589 Search in Google Scholar

[24] Masse, D.I. Croteau F. Patni N.K. & Masse L. (2003). Methane emissions from dairy cow and swine manure slurries stored at 10°C and 15°C. Canadian Biosystems Engineering. 45, 6.1–6.6. Search in Google Scholar

[25] Mathys, M. Thiessen O. Theilen F. & Schmidt M. (2005). Seismic characterization of gas-rich near surface sediments in the Arkona Basin, Baltic Sea. Marine Geoph.Res. 26, 207–224. http://dx.doi.org/10.1007/s11001-005-3719-410.1007/s11001-005-3719-4 Search in Google Scholar

[26] Mori, K. Yamamoto H. Kamagata Y. Hatsu M. & Takamizawa K. (2000). Methanocalculus pumilus sp. nov., a heavymetal-tolerant methanogen isolated from a waste-disposal site. Int. J. Syst. Evolut. Microb. 50, 1723–1729. 10.1099/00207713-50-5-172311034480 Search in Google Scholar

[27] Nunoura, T. Oida H. Miyazaki J. Miyashita A. Imachi H. & Takai K. (2008). Quantification of mcrA by fluorescent PCR in methanogenic and methanotrophic microbial communities. Microbiol. Ecology. 64, 240–247. DOI: 10.1111/j.1574-6941.2008.00451.x. http://dx.doi.org/10.1111/j.1574-6941.2008.00451.x10.1111/j.1574-6941.2008.00451.x18318714 Search in Google Scholar

[28] Piker, L. Schmaljohann R. & Imhoff J.F. (1998). Dissimilatory sulfate reduction and methane production in Gotland Deep sediments (Baltic Sea) during a transition period from oxic to anoxic bottom water (1993–1996). Aquatic Microbial Ecology. 14, 183–193. http://dx.doi.org/10.3354/ame01418310.3354/ame014183 Search in Google Scholar

[29] Reeburgh, W.S. (2007). Oceanic methane biogeochemistry. Chem. Rev.. 107, 486–513. DOI: 10.1021/cr050362v. http://dx.doi.org/10.1021/cr050362v10.1021/cr050362v17261072 Search in Google Scholar

[30] Saitou, N. & Nei M. (1987). The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 4, 406–425. Search in Google Scholar

[31] Sambrook, J. Fritsch E.F. Maniatis T. (1989). Molecular cloning: a laboratory manual. 2. ed., Cold Spring Harbor Laboratory Press, New York, 253pp. Search in Google Scholar

[32] Schlüter, M. Sauter E.J. Anderson C.E. Dahlgaard H. & Dando P.R. (2004). Spatial distribution and budget for submarine groundwater discharge in Eckenförde Bay (Western Baltic Sea). Limnol. Oceanogr. 49, 157–167. http://dx.doi.org/10.4319/lo.2004.49.1.015710.4319/lo.2004.49.1.0157 Search in Google Scholar

[33] Schmaljohann, R. (1996). Methane Dynamics in the sediment and water column of Kiel Harbour (Baltic Sea). Mar. Ecol. Prog. Ser. 131, 263–273. http://dx.doi.org/10.3354/meps13126310.3354/meps131263 Search in Google Scholar

[34] Shlimon, A.G. Friedrich M.W. Niemann H. Ramsing N.B. & Finster K. (2004). Methanobacterium aarhusense sp. nov., a novel methanogen isolated from a marine sediment (Aarhus Bay, Denmark). Int. J. Syst. Evolut. Microb. 54, 759–763. http://dx.doi.org/10.1099/ijs.0.02994-010.1099/ijs.0.02994-0 Search in Google Scholar

[35] Sowers, K.R. Johnson J.L. & Ferry J.G. (1984). Phylogenic relationships among the methylotrophic methane-producing bacteria and emendation of the family Methanosarcinaceae. Int. J. Syst. Bacteriol. 34, 444–450. DOI:10.1099/00207713-34-4-444. http://dx.doi.org/10.1099/00207713-34-4-44410.1099/00207713-34-4-444 Search in Google Scholar

[36] Steinberg, L.M. & Regan J.M. (2009). mcrA-Targeted Real-Time Quantitative PCR Method to Examine Methanogen Communities. Appl. Environ. Microbiol. 75, 4435–4442. http://dx.doi.org/10.1128/AEM.02858-0810.1128/AEM.02858-08 Search in Google Scholar

[37] Takao, I. Koji M. & Ken-ichiro S. (2010). Methanospirillum lacunae sp. nov., a methane-producing archaeon isolated from a puddly soil, and emended descriptions of the genus Methanospirillum and Methanospirillum hungatei. Int. J. Syst. Evol. Microbiol. 60, 2563–2566. DOI 10.1099/ijs.0.020131-0. http://dx.doi.org/10.1099/ijs.0.020131-010.1099/ijs.0.020131-0 Search in Google Scholar

[38] von Klein, D. Arab H. Völker H. & Thomm M. (2002). Methanosarcina baltica, sp. nov., a novel methanogen isolated from the Gotland Deep of the Baltic Sea. Extremophiles. 6(2), 103–110. http://dx.doi.org/10.1007/s00792010023410.1007/s007920100234 Search in Google Scholar

[39] Wegener, G. (2008). Methane oxidation and carbon assimilation in marine sediments. Doctoral dissertation. Bremen University. Search in Google Scholar

[40] Whitman, W.B. Bowen T.L. Boone D.R. (2006). The methanogenic bacteria. In Dworkin M. (eds.), The Procaryotes: archaea. Bacteria: Firmicutes, Actinomycetes. (165–207). Springer. Search in Google Scholar

[41] Wilkens, R. H. & Richardson M.D. (1998). The influence of gas bubbles on sediment acoustic properties: in situ, laboratory, and theoretical results from Eckenförde Bay, Baltic Sea. Continental Shelf Research. 18, 1859–1892. http://dx.doi.org/10.1016/S0278-4343(98)00061-210.1016/S0278-4343(98)00061-2 Search in Google Scholar

[42] Witkowski, A. (1993). Mikrofitobentos. In Korzeniewski K. (eds.), Zatoka Pucka. Foundation of Gdańsk University Development, Gdańsk, 395–415. Search in Google Scholar

eISSN:
1897-3191
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, other, Geosciences, Life Sciences