Open Access

The effect of traumatic acid on the growth, metabolite content and antioxidant activity in Wolffia arrhiza (L.) Wimm. (Lemnaceae)


Cite

[1] Aeby, H. (1984). Catalase in vitro. Methods Enzymol., 105, 125–212. Search in Google Scholar

[2] Asafova, E. V., Asaleeva, G. A., Yakovleva, V. G. & Tarchevskii, I. A. (2005). The effect of traumatic acid on tyrosine phosphorylation of proteins in Pea seedlings. Dokl. Biochem. Biophys., 405, 426–428. http://dx.doi.org/10.1007/s10628-005-0131-610.1007/s10628-005-0131-6 Search in Google Scholar

[3] Beauchamp, C. & Fridovich, I. (1971). Superoxide dismutase improved assays and an assay applicable to acrylamide gels. Anal. Biochem., 444, 276–287. http://dx.doi.org/10.1016/0003-2697(71)90370-810.1016/0003-2697(71)90370-8 Search in Google Scholar

[4] Bogatek, R., Côme, D., Corbineau, F., Ranjan, R. & Lewak, S. (2002). Jasmonic acid effects dormancy and sugar catabolic in germinating apple embryos. Plant Physiol. Biochem., 40, 167–173. http://dx.doi.org/10.1016/S0981-9428(01)01353-510.1016/S0981-9428(01)01353-5 Search in Google Scholar

[5] Bowler, C., Van Montague, M. & Inez, D. (1992). Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol., 43, 83–116. http://dx.doi.org/10.1146/annurev.pp.43.060192.00050310.1146/annurev.pp.43.060192.000503 Search in Google Scholar

[6] Champavier, Y., Pommier, M. T., Arpin, N., Voiland, A. & Pellon, G. (2000). 10-oxo-trans-8-decenoic acid (ODA): production, biological activities, and comparison with other hormone-like substances in Agaricus bisporus. Enzyme Microb. Tech., 26, 243–251. http://dx.doi.org/10.1016/S0141-0229(99)00139-810.1016/S0141-0229(99)00139-8 Search in Google Scholar

[7] Ciereszko, I. (2002). Sugar regulation and signaling in the plant cells. Post. Biol. Kom., 29, 269–289. Search in Google Scholar

[8] Ciereszko, I. (2006). Sucrose metabolism control in plants as response to changes of environmental condition. Kosmos, 55, 229–241. Search in Google Scholar

[9] Croft, K. P. C., Jüttner, F. & Slusarenko, A. J. (1993). Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L.) leaves inoculated with Pseudomonas syringae pv phaseolicola. Plant Physiol., 101, 13–24. 10.1104/pp.101.1.1315864212231661 Search in Google Scholar

[10] Czerpak, R. & Piotrowska, A. (2005). Wolffia arrhiza — the smallest plant with the highest adaptation ability and applications. Kosmos, 54, 241–250. Search in Google Scholar

[11] Fairbanks, J., Steck, T. L. & Wallach, D. F. H. (1971). Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry, 10, 2606–2617. http://dx.doi.org/10.1021/bi00789a03010.1021/bi00789a0304326772 Search in Google Scholar

[12] Farmer, E., Johnson, R. & Ryan, C. (1992). Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol., 98, 995–1002. http://dx.doi.org/10.1104/pp.98.3.99510.1104/pp.98.3.995108030016668777 Search in Google Scholar

[13] Foyer, C. H. & Halliwel, B. (1976). The presence of glutathione and glutathione reductase in chloroplast: a proposed role in ascorbic acid metabolism. Planta, 133, 21–25. http://dx.doi.org/10.1007/BF0038600110.1007/BF0038600124425174 Search in Google Scholar

[14] Foyer, C. H. & Noctor, G. (2005). Oxidant and antyoxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ., 28, 1056–1071. http://dx.doi.org/10.1111/j.1365-3040.2005.01327.x10.1111/j.1365-3040.2005.01327.x Search in Google Scholar

[15] Fujita, M., Mori, K. & Kodera, T. (1999). Nutrient removal and starch production through cultivation of Wolffia arrhiza. J. Biosci. Bioeng., 87, 194–198. http://dx.doi.org/10.1016/S1389-1723(99)89012-410.1016/S1389-1723(99)89012-4 Search in Google Scholar

[16] Gapper, C. & Dolan, L. (2006). Control of plant development by reactive oxygen species. Plant Physiol., 141, 341–345. http://dx.doi.org/10.1104/pp.106.07907910.1104/pp.106.079079 Search in Google Scholar

[17] Gill, P. K., Sharma, A. D., Singh, P. & Bhullar, S. S. (2003). Changes in germination, growth and soluble sugar contents of Sorgum bicolor (L.) Moench seeds under various abiotic stresses. Plant Growth Regul., 40, 157–162. http://dx.doi.org/10.1023/A:102425222237610.1023/A:1024252222376 Search in Google Scholar

[18] Glaeser, J. & Klug, G. (2005). Photo-oxidative stress in Rhodobacter sphaeroides: protective role of carotenoids and expression of selected genes. Microbiology, 151, 1927–1938. http://dx.doi.org/10.1099/mic.0.27789-010.1099/mic.0.27789-0 Search in Google Scholar

[19] Goldsmith, C. R., Jonas, R. T. & Stack T. D. P. (2002). C-H bond activation by a ferric methoxide complex: modeling the rate-determining step in the mechanism of lipoxygenase. J. Am. Chem. Soc., 124, 83–96. http://dx.doi.org/10.1021/ja016451g10.1021/ja016451g Search in Google Scholar

[20] Grekchin, A. N. (1998). Recent developments in biochemistry of the plant lipoxygenase pathway. Prog. Lipid Res., 37, 317–352. http://dx.doi.org/10.1016/S0163-7827(98)00014-910.1016/S0163-7827(98)00014-9 Search in Google Scholar

[21] Grekchin, A. N. (2002). Hydroperoxide lyase and divinyl ether synthase. Prostag. Oth. Lipid M., 68-69, 457–470. http://dx.doi.org/10.1016/S0090-6980(02)00048-510.1016/S0090-6980(02)00048-5 Search in Google Scholar

[22] Haluškova, L., Valentovičová, K., Huttová, J., Mistrik, I. & Tamás, L. (2010). Effect of heavy metals on root growth and peroxidase activity in barley root tip. Acta Physiol. Plant., 32, 59–65. http://dx.doi.org/10.1007/s11738-009-0377-110.1007/s11738-009-0377-1 Search in Google Scholar

[23] Hassanein, R. A., Hassanein, A. A., El-din, A. B., Salama, M. & Hashem, H. A. (2009). Role of jasmonic acid and abscisic acid treatments in alleviating the adverse effects of drought stress and regulating trypsin inhibitor production in soybean plant. Aust. J. Bas. Appl. Sci., 3, 904–919. Search in Google Scholar

[24] Heath, R. L. & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys., 125, 189–198. http://dx.doi.org/10.1016/0003-9861(68)90654-110.1016/0003-9861(68)90654-1 Search in Google Scholar

[25] Howe, G. A. & Schilmiller, A. L. (2002). Oxylipin metabolism in response to stress. Curr. Opin. Plant Biol., 5, 230–236. http://dx.doi.org/10.1016/S1369-5266(02)00250-910.1016/S1369-5266(02)00250-9 Search in Google Scholar

[26] Hung, K. T. & Kao, C. H. (1997). Senescence of rice leaves XXXV. Promotive effects of jasmonates. Bot. Bull. Acad. Sin., 38, 85–89. Search in Google Scholar

[27] Jaleel, C. A., Riadh, K., Gopi, R., Manivannan, P., Inès, J., Al-Juburi, H. J., Chang-Xing, Z., Hong-Bo, S. & Panneerselvam, R. (2009). Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol. Plant., 31, 427–436. http://dx.doi.org/10.1007/s11738-009-0275-610.1007/s11738-009-0275-6 Search in Google Scholar

[28] Kawano, T. (2003). Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep., 21, 829–837. 10.1007/s00299-003-0591-z Search in Google Scholar

[29] Klimecka, M., Trojanek, J. & Muszyńska, G. (2002). Plant protein kinases phosphorylating tyrosine. Post. Bioch., 48, 74–80. Search in Google Scholar

[30] Kwak, J. M., Nguyen, V., Schroeder, J. I. (2006). The role of reactive oxygen species in hormonal response. Plant Physiol., 141, 323–329. http://dx.doi.org/10.1104/pp.106.07900410.1104/pp.106.079004 Search in Google Scholar

[31] Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685. http://dx.doi.org/10.1038/227680a010.1038/227680a0 Search in Google Scholar

[32] León, J., Rojo, E. & Sánchez-Serrano, J. J. (2001). Wound signaling in plants. J. Exp. Bot., 52, 1–9. http://dx.doi.org/10.1093/jexbot/52.354.110.1093/jexbot/52.354.1 Search in Google Scholar

[33] Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265–275. 10.1016/S0021-9258(19)52451-6 Search in Google Scholar

[34] Lloyd, N. D. H., Canvin, D. T. & Culver, D. A. (1977). Photosynthesis and photorespiration in algae. Plant Physiol., 59, 936–940. http://dx.doi.org/10.1104/pp.59.5.93610.1104/pp.59.5.936 Search in Google Scholar

[35] Mical, A. & Krotke, A. (1999). Wolffia arrhiza (L.) — small but strong. Acta Hydrobiol., 6, 165–170. Search in Google Scholar

[36] Mittler, R., Vanderauwera, S., Gollery, M. & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci., 9, 490–498. http://dx.doi.org/10.1016/j.tplants.2004.08.00910.1016/j.tplants.2004.08.009 Search in Google Scholar

[37] Nakano, Y. & Asada, K. (1981). Hydrogen peroxidase is scavended by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22, 867–880. Search in Google Scholar

[38] Nelson, N. (1944). A photometric adaptation of the Samogyi method for the determination of glucose. J. Biol. Chem., 153, 375–380. 10.1016/S0021-9258(18)71980-7 Search in Google Scholar

[39] Pietryczuk, A, Piotrowska, A & Czerpak, R. (2008). The influence of traumatic acid on the growth and metabolite content of the green alga Chlorella vulgaris Beijerinck. Oceanol Hydrobiol Stud., 37 (1), 3–15. http://dx.doi.org/10.2478/v10009-007-0035-010.2478/v10009-007-0035-0 Search in Google Scholar

[40] Rice-Evans, C. A., Diplock, A. T. & Symons, M. C. R. (1991). Techniques in free radical research. London: Elsevier. Search in Google Scholar

[41] Schweizer, P., Gees, R. & Mösinger, E. (1993). Effect of jasmonic acid on the interaction of barley (Hordeum vulgare L.) with the powdery mildew Erysiphe graminis f.sp. Hordei. Plant Physiol., 102, 503–511. 10.1104/pp.102.2.503 Search in Google Scholar

[42] Scott, F. M., Bystrom, B. G. & Sjaholm, V. (1961). Anatomy of traumatic acid-treated internodes of Ricinus communis. Bot. Gaz., 122, 311–314. http://dx.doi.org/10.1086/33612010.1086/336120 Search in Google Scholar

[43] Siedow, J. N. (1991). Plant lipoxygenase: structure and function. Ann. Rev. Plant Physiol., 42, 145–188. http://dx.doi.org/10.1146/annurev.pp.42.060191.00104510.1146/annurev.pp.42.060191.001045 Search in Google Scholar

[44] Sivasankar, S., Sheldrick, B. & Rothstein, S. J. (2000). Expression of allene oxide synthase determines defense gene activation in tomato. Plant Physiol., 122, 1335–1342. http://dx.doi.org/10.1104/pp.122.4.133510.1104/pp.122.4.1335 Search in Google Scholar

[45] Stelt, M., Noordermeer, M. A., Kiss, T., Zadelhoft, G., Merghart, B., Veldink, G. A. & Vliegenthart, F. G. (2000). Formation of a new class of oxylipins from N-acyl(ethanol)amines by the lipoxygenase pathway. Eur. J. Biochem., 267, 2000–2007. http://dx.doi.org/10.1046/j.1432-1327.2000.01203.x10.1046/j.1432-1327.2000.01203.x Search in Google Scholar

[46] Suzuki, N. & Mittler, R. (2006). Reactive oxygen species and temperature stres: a delicate balanse between signaling and destruction. Physiol. Plant., 126, 45–51. http://dx.doi.org/10.1111/j.0031-9317.2005.00582.x10.1111/j.0031-9317.2005.00582.x Search in Google Scholar

[47] Szalai, G., Kellös, T., Galiba, G. & Koesu, G. (2009). Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J. Plant Growth Regul., 28, 66–80. http://dx.doi.org/10.1007/s00344-008-9075-210.1007/s00344-008-9075-2 Search in Google Scholar

[48] Szamrej, I. K. & Czerpak, R. (2004). The effect of sex steroids and corticosteroids on the content of soluble proteins, nucleic acids and reducing sugars in Wolffia arrhiza (L.) Wimm. (Lemnaceae). Pol. J. Environ. Stud., 13 (5), 565–571. Search in Google Scholar

[49] Szechyńska-Hebda, M., Skrzypek, E., Dąbrowska, G., Biesaga-Kościelniak, J., Filek, M. & Wędzony, M. (2007). The role of oxidative stress induced by growth regulators in the regeneration process of wheat. Acta Physiol. Plant., 29, 327–337. http://dx.doi.org/10.1007/s11738-007-0042-510.1007/s11738-007-0042-5 Search in Google Scholar

[50] Tarchevsky, I. A., Maksyutova, N. N., Yakovleva, V. G. (2001). Effect of jasmonic, salicylic and abscisic acids on [14C] leucine incorporation into proteins of Pea leaves. Biochemistry, 66, 68–71. http://dx.doi.org/10.1023/A:100288571381410.1023/A:1002885713814 Search in Google Scholar

[51] Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol., 144, 307–313. 10.1016/S0176-1617(11)81192-2 Search in Google Scholar

[52] Zimmerman, D. C. & Coudron, C. A. (1979). Identification of traumatin, a wound hormone, as 12-oxo-trans-10-dodecenoic acid. Plant Physiol., 63, 536–541. http://dx.doi.org/10.1104/pp.63.3.53610.1104/pp.63.3.53654286516660762 Search in Google Scholar

[53] Żuchowski J. (1999). Vegetable superoxide dismutases. Kosmos, 48, 87–93. Search in Google Scholar

eISSN:
1897-3191
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, other, Geosciences, Life Sciences