Open Access

Fading out of the trophic cascade at the base of the microbial food web caused by changes in the grazing community in mesocosm experiments


Cite

[1] Arvola, L. (1999). Trophic interactions. In Limnology of humic waters (pp. 265–279). Leiden: Backhuys Publishers. Search in Google Scholar

[2] Arvola, L., Eloranta, P., Järvinen, M., Keskitalo, J. & Holopaine, A-L. (1999). Phytoplankton. In Limnology of humic waters (pp. 137–171). Leiden: Backhuys Publishers. Search in Google Scholar

[3] Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A. & Thingstad, F. (1983). The Ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser., 10, 257–263. http://dx.doi.org/10.3354/meps01025710.3354/meps010257 Search in Google Scholar

[4] Bergström, A.-K., Jansson, M., Drakare, S. & Blomqvist P. (2003). Occurrence of mixotrophic flagellates in relation to bacterioplankton production, light regime and availability of inorganic nutrients in unproductive lakes with differing humic contents. Freshwater Biol., 48, 686–877. http://dx.doi.org/10.1046/j.1365-2427.2003.01061.x10.1046/j.1365-2427.2003.01061.x Search in Google Scholar

[5] Bloesch, J. (1988). Mesocosm studies. Hydrobiologia, 159, 221–222. http://dx.doi.org/10.1007/BF0000823510.1007/BF00008235 Search in Google Scholar

[6] Burns, C. & Schallenberg, M. (2001). Short-term impacts of nutrients, Daphnia, and copepods on microbial food-webs of an oligotrophic and eutrophic lake. New Zealand J. Marine Freshwater Res., 35, 695–710. http://dx.doi.org/10.1080/00288330.2001.951703610.1080/00288330.2001.9517036 Search in Google Scholar

[7] Callieri, C. & Stockner, J. G. (2002). Freshwater autotrophic picoplankton: a review. J. Limnol., 61, 1–14. 10.4081/jlimnol.2002.1 Search in Google Scholar

[8] Carpenter, S. R., Kitchell, J. F. & Hodgson, J. R. (1985). Cascading trophic interactions and lake productivity. BioScience, 35, 635–639. http://dx.doi.org/10.2307/130998910.2307/1309989 Search in Google Scholar

[9] Dowgiałło, A. (1984). Simplified photometric methods of determination of ammonia and Kjeldahl nitrogen in biological materials. Pol. Arch. Hydrobiol., 31, 317–339. Search in Google Scholar

[10] Flynn, K. & Mitra, A. (2009). Building the “perfect beast”: modelling mixotrophic plankton. J. Plankton Res., 31, 965–992. http://dx.doi.org/10.1093/plankt/fbp04410.1093/plankt/fbp044 Search in Google Scholar

[11] Golterman, H. L. & Clymo, R. S. (1978). Methods for physical & chemical analysis of fresh waters (pp. 214). Oxford, Edinburgh, London, Melbourne: IBP Handbook No. 8. Blackwell Scientific Publications. Search in Google Scholar

[12] Horn, H. & Horn, W. (2008). Bottom-up or top-down — How is autotrophic picoplankton mainly controlled? Results of long term investigations from two drinking water reservoirs of different trophic state. Limnologica, 38, 302–312. http://dx.doi.org/10.1016/j.limno.2008.05.00710.1016/j.limno.2008.05.007 Search in Google Scholar

[13] Jasser, I., Kostrzewska-Szlakowska, I., Ejsmont-Karabin, J., Kalinowska, K. & Węgleńska, T. (2009). Autotrophic versus heterotrophic production and components of trophic chain in humic lakes: the role of microbial communities. Pol. J. Ecol., 57, 423–439. Search in Google Scholar

[14] Jones, R. I. (2000). Mixotrophy in planktonic protists: an overview. Freshwater Biol., 45, 219–226. http://dx.doi.org/10.1046/j.1365-2427.2000.00672.x10.1046/j.1365-2427.2000.00672.x Search in Google Scholar

[15] Jürgens, K. (1994). The impact of Daphnia on microbial food webs — a review. Mar. Microb. Food Webs., 8, 295–324. Search in Google Scholar

[16] Jürgens, K. & Jeppesen, E. (2000). The impact of metazooplankton on the structure of the microbial food web in a shallow, hypertrophic lake. J. Plankton Res., 22, 1047–1070. http://dx.doi.org/10.1093/plankt/22.6.104710.1093/plankt/22.6.1047 Search in Google Scholar

[17] Malinsky-Rushansky, N. & Berman, T. (1991). Picocyanobacteria and bacteria in lake Kinneret. Int. Rev. Gesamten Hydrobiol., 76, 555–564. http://dx.doi.org/10.1002/iroh.1991076040810.1002/iroh.19910760408 Search in Google Scholar

[18] Marker, A. F. H., Nush, E. A., Rai, H. & Riemann, B. (1980). The measurement of photosynthetic pigments in freshwaters and standardization of methods: conclusions and recommendations of the workshop. In Proceedings of the workshop on the measurement of photosynthetic pigments in freshwaters and standardization of methods. Arch. Hydrobiol./Beih. Ergebn. Limnol., 14, 91–106. Search in Google Scholar

[19] Mazumder, A. (1994). Patterns of algal biomass in dominant odd-vs. even-link lake ecosystems. Ecology, 75, 1141–1149. Search in Google Scholar

[20] Modenutti, B. E., Queimaliños, C. P., Balseiro, E. G. & Reissig, M. (2003). Impact of different zooplankton structures on the microbial food web of an Andean oligotrophic lake. Acta Oecologica, 24 S1, 289–298. http://dx.doi.org/10.1016/S1146-609X(03)00030-410.1016/S1146-609X(03)00030-4 Search in Google Scholar

[21] Muylaert, K., Zhao, L., Van der Gucht, K., Cousin, S., Declerck, S. & Vyverman, W. (2006). Trophic coupling in the microbial food web of a eutrophic shallow lake (Lake Visvijer, Belgium). Arch. Hydrobiol., 166, 307–324. http://dx.doi.org/10.1127/0003-9136/2006/0166-030710.1127/0003-9136/2006/0166-0307 Search in Google Scholar

[22] Pace, M. L. & Funke, E. (1991). Regulation of planktonic microbial communities by nutrients and herbivores. Ecology, 72, 904–914. http://dx.doi.org/10.2307/194059210.2307/1940592 Search in Google Scholar

[23] Persson, L., Andersson, G., Hamrin, S. F. & Johansson, L. (1988). Predator regulation and primary production along the productivity gradient of temperate ecosystems, In Carpenter S. R. (Ed.), Complex interactions in Lake Communities (pp. 45–65). New York: Springer-Verlag. http://dx.doi.org/10.1007/978-1-4612-3838-6_410.1007/978-1-4612-3838-6_4 Search in Google Scholar

[24] Pomeroy, L. R. (1974). The oceans’s food web, changing paradigm. BioScience, 24, 499–504. http://dx.doi.org/10.2307/129688510.2307/1296885 Search in Google Scholar

[25] Porter, K. G. & Feig, Y. S. (1980). The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr., 25, 943–948. http://dx.doi.org/10.4319/lo.1980.25.5.094310.4319/lo.1980.25.5.0943 Search in Google Scholar

[26] Ptacnik, R., Sommer, U., Hansen, T. & Volker, M. (2004). Effects of microzooplankton and mixotrophy in an experimental planktonic food web. Limnol. Oceanogr., 49, 1435–1445. http://dx.doi.org/10.4319/lo.2004.49.4_part_2.143510.4319/lo.2004.49.4_part_2.1435 Search in Google Scholar

[27] Rojo, C., Rodrigo, M. & Barón-Rodríguez, M. (2007). Dynamic of the planktonic food webs in Colgada Lake (Lagunas de Ruidera Natural Park). Limnetica, 26, 251–264. 10.23818/limn.26.22 Search in Google Scholar

[28] Ronnenberger, D., Kasprzak, P. & Krienitz L. (1993). Long-term changes in the rotifer fauna after biomanipulation in Haussee (Feldberg, Germany, Magklenburg-Vorpommern) and its relationship to the crustacean and phytoplankton communities. Hydrobiologia, 255/256, 297–304. http://dx.doi.org/10.1007/BF0002585210.1007/BF00025852 Search in Google Scholar

[29] Sarnelle, O. (1997). Daphnia effects on microzooplankton: comparisons of enclosure and whole-lake responses. Ecology, 78, 913–928. 10.2307/2266069 Search in Google Scholar

[30] Sommer, U., Sommer, F., Santer, B., Zöllner, E., Jürgens, K., Jamieson, C., Boersma, M. & Gocke, K. (2003). Daphnia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels. Oecologia, 135, 639–647. 10.1007/s00442-003-1214-716228259 Search in Google Scholar

[31] Strong, D. R. (1992). Are trophic cascades ale wet? Differentiation and donor-control in speciose ecosystems. Ecology, 73, 747–754. http://dx.doi.org/10.2307/194015410.2307/1940154 Search in Google Scholar

[32] Utermohl, H. (1958). Zur Vervollkommnung der quatitativen Phytoplankton-Methodik. Int. Verein. Theoretische Angew. Limnol., 9, 1–38. Search in Google Scholar

[33] Vaqué, D. & Pace, M. L. (1992). Grazing on bacteria by flagellates and cladocerans in lakes of contrasting food web structure. J. Plankton Res., 14, 307–321. http://dx.doi.org/10.1093/plankt/14.2.30710.1093/plankt/14.2.307 Search in Google Scholar

[34] Zöllner, E., Santer, B., Boersma, M., Hoppe, H-G. & Jürgens, K. (2003). Cascading predation effects of Daphnia and copepods on microbial food web components. Freshwater Biol., 48, 2174–2193. http://dx.doi.org/10.1046/j.1365-2426.2003.01158.x10.1046/j.1365-2426.2003.01158.x Search in Google Scholar

eISSN:
1897-3191
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, other, Geosciences, Life Sciences