1. bookVolume 32 (2014): Issue 4 (December 2014)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Thermal evolution of the morphology of Ni/Ge(111)-c(2 × 8) surface

Published Online: 19 Dec 2014
Volume & Issue: Volume 32 (2014) - Issue 4 (December 2014)
Page range: 641 - 647
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

The thermal evolution of the interface formed by room temperature (RT) deposition of Ni atoms (coverage 0.1, 0.5, 1.2 ML) onto a Ge(111)-c(2 × 8) surface has been studied with the use of scanning tunneling microscopy (STM). Atomically resolved STM images revealed that, at RT, the boundaries between the different c(2 × 8) domains acted as nucleation sites for Ni atoms. After annealing the surface with deposited material at 473 to 673 K the formation of nano-sized islands of NixGey compounds was observed. In addition, the occurrence of ring-like structures was recorded. Based on the dual-polarity images the latter were assigned to Ni atoms adsorbed on Ge adatoms.

Keywords

[1] Russel B., Semiconductor Surfaces: Germanium, in: Stroscio J.A., Kaiser W.J. (Eds.), Scanning Tunneling Microscopy, Academic Press, San Diego, 1993, p. 225. Search in Google Scholar

[2] Takayanagi K., Tarishiro Y., Takahashi S., Takahasi M., Surf. Sci., 164 (1985), 367. http://dx.doi.org/10.1016/0039-6028(85)90753-810.1016/0039-6028(85)90753-8Search in Google Scholar

[3] Becker R.S., Swartzentruber B.S., Vickers J.S., Klitsner T., Phys. Rev. B, 39 (1989), 1633. http://dx.doi.org/10.1103/PhysRevB.39.163310.1103/PhysRevB.39.1633Search in Google Scholar

[4] Bisi O., Chiao L.W., Tu K.N., Phys. Rev. B, 30 (1984), 4664. http://dx.doi.org/10.1103/PhysRevB.30.466410.1103/PhysRevB.30.4664Search in Google Scholar

[5] Mangelinck D., Gas P., Grob A., Pichaud P., Thomas O., J. Appl. Phys., 79 (1996), 4078. http://dx.doi.org/10.1063/1.36177010.1063/1.361770Search in Google Scholar

[6] Guo X., Yu H., Jiang Y.L., Ru G.P., Zhang D.W., Li B.Z., Appl. Surf. Sci., 257 (2011), 10571. http://dx.doi.org/10.1016/j.apsusc.2011.07.05210.1016/j.apsusc.2011.07.052Search in Google Scholar

[7] Kinoda G., Ogawa K., Surf. Sci., 461 (2000), 67. http://dx.doi.org/10.1016/S0039-6028(00)00534-310.1016/S0039-6028(00)00534-3Search in Google Scholar

[8] Koczorowski W., Bazarnik M., Czajka R., Acta Phys. Pol. A, 120 (2011), 480. 10.12693/APhysPolA.120.480Search in Google Scholar

[9] Yoshimura M., Shinabe S., Yao T., Surf. Sci., 357–358 (1996), 917. http://dx.doi.org/10.1016/0039-6028(96)00291-910.1016/0039-6028(96)00291-9Search in Google Scholar

[10] Chawanda A., Nyamhere C., Auret F.D., Mtangi W., Diale M., Nel J.M., Phys. Status Solidi C, 7(2) (2010), 248. http://dx.doi.org/10.1002/pssc.20098240410.1002/pssc.200982404Search in Google Scholar

[11] Tsui F., He L., Ma L., Tkachuk A., Chu Y.S., Nakajima K., Chikyow T., Phys. Rev. Lett., 91 (2003), 177203. http://dx.doi.org/10.1103/PhysRevLett.91.17720310.1103/PhysRevLett.91.17720314611374Search in Google Scholar

[12] Mocking T.F., Hlawacek G., Zandvliet H.J.W., Surf. Sci., 606 (2012), 924. http://dx.doi.org/10.1016/j.susc.2012.02.00710.1016/j.susc.2012.02.007Search in Google Scholar

[13] Sell K., Kleibert A., Oeynhausen V.V., Meiwes-Broer K.H., Eur. Phys. J. D., 45 (2007), 433. http://dx.doi.org/10.1140/epjd/e2007-00213-710.1140/epjd/e2007-00213-7Search in Google Scholar

[14] Choi J., Lim D.K., Kim Y., Kim S., J. Phys. Chem. C, 114 (2010), 8992. http://dx.doi.org/10.1021/jp100694s10.1021/jp100694sSearch in Google Scholar

[15] Girardeaux C., Tôkei Z., Clugnet G., Rolland A., Appl. Surf. Sci., 162 (2000), 208. http://dx.doi.org/10.1016/S0169-4332(00)00193-810.1016/S0169-4332(00)00193-8Search in Google Scholar

[16] Mocking T.F., Poelsena B., Zandvliet H.J.W., Surf. Sci., 610 (2013), 59. http://dx.doi.org/10.1016/j.susc.2013.01.00710.1016/j.susc.2013.01.007Search in Google Scholar

[17] Grzela T., Koczorowski W., Capellini G., Czajka R., Radny M.W., Curson N., Schofield S.R., Schubert M.A., Schroeder T., J. Appl. Phys., 115 (2014), 074307. http://dx.doi.org/10.1063/1.486595510.1063/1.4865955Search in Google Scholar

[18] Perrin C., Mangelinck D., Nemouchi F., Labor J., Lavoie C., Bergman C., Gas P., Mat. Sci. Eng. B-Adv., 154–155 (2008), 163. http://dx.doi.org/10.1016/j.mseb.2008.09.04210.1016/j.mseb.2008.09.042Search in Google Scholar

[19] Jin L.J., Pey K.L., Choi W.K., Fitzgerald E.A., Antoniadis D.A., Pitera A.J., Lee M.L., Chi D.Z., Tung C.H., Thin Solid Films, 462–463 (2004) 151. http://dx.doi.org/10.1016/j.tsf.2004.05.04710.1016/j.tsf.2004.05.047Search in Google Scholar

[20] Zhang Q., Wu N., Osipowicz T., Bera L.K., Zhu C., Jpn. J. Appl. Phys., 44 (2005), L1389. http://dx.doi.org/10.1143/JJAP.44.L138910.1143/JJAP.44.L1389Search in Google Scholar

[21] Fu T.Y., Tomaszewska A., Huang X.L, Li J.H., Hsieh P.I., Jhou M.K., Nanoscale Res. Lett., 8 (2013), 416. http://dx.doi.org/10.1186/1556-276X-8-41610.1186/1556-276X-8-416385210424103192Search in Google Scholar

[22] Wintterlin J., Avouris P., J. Chem. Phys., 100 (1994), 687. http://dx.doi.org/10.1063/1.46693410.1063/1.466934Search in Google Scholar

[23] Goethelid M., Bjoerkqvist M., Karlsson U.O., Flodström, Microsc. Microanal. Microstruct., 5 (1994), 277. http://dx.doi.org/10.1051/mmm:0199400504-602770010.1051/mmm:0199400504-6027700Search in Google Scholar

[24] Wawro A., Suto S., Czajka R., Kasuya A., Phys. Rev. B, 67 (2003), 195401. http://dx.doi.org/10.1103/PhysRevB.67.19540110.1103/PhysRevB.67.195401Search in Google Scholar

[25] Bennett P.A., Parikh S.A., Cahill D.G., J. Vac. Sci. Technol. A, 11 (1993), 1680. http://dx.doi.org/10.1116/1.57847810.1116/1.578478Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo