1. bookVolume 32 (2014): Issue 3 (September 2014)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Effect of substrate temperature and precursor ratio on properties of thin ZnS films sprayed by improved method

Published Online: 17 Oct 2014
Volume & Issue: Volume 32 (2014) - Issue 3 (September 2014)
Page range: 375 - 384
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Zinc sulphide (ZnS) thin films were prepared by improved spray pyrolysis (ISP) method. The ISP parameters, such as carrier gas flow rate, solution flow rate and substrate temperature, were controlled with an accuracy of ±0.25 lpm, ±1 ml/h and ±1 °C, respectively. The solution was sprayed in a pulsed mode. The substrate temperature was optimized by analyzing substrate temperature dependent properties of thin films. The thin film deposited at a temperature of 450 °C was dense and fairly smooth with satisfactory crystallinity and very small impurity content. The effect of precursor ratio in the solution on structural, compositional and optical properties of thin ZnS films, deposited at a temperature of 450 °C, was studied. A gradual increase in band gap energy from 3.524 eV to 3.634 eV, refractive index from 2.5 to 2.9 and dielectric constant from 6.6 to 8.7 were observed with the variation of solution precursor (Zn:S) ratio from (1:2) to (1:6). The structural and compositional studies support this kind of enhancement in optical properties. The results show that the thin ZnS film prepared by ISP at the substrate temperature of 450 °C from a solution with specific precursor ratio can be used for optoelectronic and photovoltaic applications.

Keywords

[1] Wang Z., Daemen L.L., Zhao Y., Zha C.S., Downs R.T., Wang X., Wang Z.L., Hemley R.J., Nature, 4 (2005), 922. http://dx.doi.org/10.1038/nmat152210.1038/nmat1522Search in Google Scholar

[2] Deulkara S.H., Bhosaela C.H., Sharonb M., J. Phys. Chem. Solids, 65 (2004), 1879. http://dx.doi.org/10.1016/j.jpcs.2004.06.01210.1016/j.jpcs.2004.06.012Search in Google Scholar

[3] Prevenslik T.V., J. Lumin., 87–89 (2000), 1210. http://dx.doi.org/10.1016/S0022-2313(99)00513-X10.1016/S0022-2313(99)00513-XSearch in Google Scholar

[4] Borah J.P., Sarma K.C., Acta Phys. Pol. A, 114 (2008), 713. 10.12693/APhysPolA.114.713Search in Google Scholar

[5] Zhang G., Zhao J., Green M.A., Sol. Energ. Mat. Sol. C., 51 (1998), 393. http://dx.doi.org/10.1016/S0927-0248(97)00258-410.1016/S0927-0248(97)00258-4Search in Google Scholar

[6] Ledger A.M., Appl. Optics, 18 (1979), 2979. http://dx.doi.org/10.1364/AO.18.00297910.1364/AO.18.002979Search in Google Scholar

[7] Potter R.R., Sites J.R., Appl. Phys. Lett., 43 (1983), 843. http://dx.doi.org/10.1063/1.9452210.1063/1.94522Search in Google Scholar

[8] Nakada T., Mizutani M., Hagiwara Y., Kunioka A., Sol. Energ. Mat. Sol. C., 67 (2001), 255. http://dx.doi.org/10.1016/S0927-0248(00)00289-010.1016/S0927-0248(00)00289-0Search in Google Scholar

[9] Boubaker K., Chaouachi A., Amlouk M., Bouzouita H., Eur. Phys. J.-Appl. Phys., 37 (2007), 105. http://dx.doi.org/10.1051/epjap:200700510.1051/epjap:2007005Search in Google Scholar

[10] Lopez M.C., Espinos J.P., Martin F., Leinen D., Ramos-barrado J.S., J. Cryst. Growth, 285 (2005), 66. http://dx.doi.org/10.1016/j.jcrysgro.2005.07.05010.1016/j.jcrysgro.2005.07.050Search in Google Scholar

[11] Cullity B.D., Stock S.R., Elements of X-ray diffraction, Prentice Hall, India, 2001. Search in Google Scholar

[12] Shinde M.S., Ahirrao P.B., Patil R.S., Arch. Appl. Sci. Res., 3 (2011), 311. Search in Google Scholar

[13] Goswami A., Thin Film Fundamentals, New Age International Ltd., India, 2008. Search in Google Scholar

[14] Peacock J.C., Peacock B.L.DEG., J. Pharm. Sci.-US., 7(8) (1918), 689. http://dx.doi.org/10.1002/jps.308007080710.1002/jps.3080070807Search in Google Scholar

[15] Johnston D.A., Carletto M.H., Reddy K.T.R., Forbes I., Miles R.W., Thin Solid Films, 403–404 (2002), 102. http://dx.doi.org/10.1016/S0040-6090(01)01536-X10.1016/S0040-6090(01)01536-XSearch in Google Scholar

[16] Luo P., Jiang G., Zhu C., Chinese J. Chem. Phys., 22 (2009), 97. http://dx.doi.org/10.1088/1674-0068/22/01/97-10110.1088/1674-0068/22/01/97-101Search in Google Scholar

[17] Elidrissi B., Addou M., Regragui M., Bougrine A., Kachouane A., Bernede J.C., Mater. Chem. Phys., 68 (2001), 175. http://dx.doi.org/10.1016/S0254-0584(00)00351-510.1016/S0254-0584(00)00351-5Search in Google Scholar

[18] Uzar N., Arikan M.C., B. Mater. Sci., 34 (2011), 287. http://dx.doi.org/10.1007/s12034-011-0085-510.1007/s12034-011-0085-5Search in Google Scholar

[19] Hernandez-fenollosa M.A., Lopez M.C., Donderis V., Gonzalez M., Mari B., Ramosbarrado J.R., Thin Solid Films, 516 (2008), 1622. http://dx.doi.org/10.1016/j.tsf.2007.05.03110.1016/j.tsf.2007.05.031Search in Google Scholar

[20] Azaroff L.V., Introduction to Solids, Tata McGraw-Hill Publishing Co. Ltd., India, 1992. Search in Google Scholar

[21] Ilican S., Caglar Y., Caglar M., J. Optoelectron. Adv. M., 10 (2008), 2578. Search in Google Scholar

[22] Lee J.D., Concise Inorganic Chemistry, Wiley, India, 1996. Search in Google Scholar

[23] Antony A., Murali K.V., Manoj R., Jayaraj M.K., Mater. Chem. Phys., 90 (2005), 106. http://dx.doi.org/10.1016/j.matchemphys.2004.10.01710.1016/j.matchemphys.2004.10.017Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo