1. bookVolume 32 (2014): Issue 3 (September 2014)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Investigation on structure of BaTi1−x NbxO3 compound prepared by rotary-hydrothermal synthesis methods

Published Online: 17 Oct 2014
Volume & Issue: Volume 32 (2014) - Issue 3 (September 2014)
Page range: 430 - 435
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

BaTi1−x NbxO3 compounds (with x = 0.0, 0.01, 0.03, 0.06, and 0.09) were synthesized by rotary-hydrothermal (RH) method. The process was conducted at 180 °C for 5 hours in a Teflon vessel that was rotated at a speed of 160 rpm during the hydrothermal reaction. The effects of donor concentration on the structure and properties of BaTi1−x NbxO3 compounds were investigated. The experiments for the BaTiO3±Nb2O3 system produced by a solid state reaction at high temperature at different concentrations of niobium, with the use of RH processing have not been reported in previous works. For the phase evolution studies, X-ray diffraction patterns (XRD) were analyzed and Raman spectroscopy measurements were performed. The transmission electron microscope (TEM) and the field emission scanning electron microscope (FE-SEM) images were taken for the detailed analysis of the grain size, surface and morphology of the compound.

Keywords

[1] Kim H.T., Han Y.H., Ceram. Int., 30 (2004), 1719. http://dx.doi.org/10.1016/j.ceramint.2003.12.14110.1016/j.ceramint.2003.12.141Search in Google Scholar

[2] Bomlai P., Songklanakarin J. Sci. Technol., 28(3) (2006), 669. Search in Google Scholar

[3] Yoo H.-I., Song C.-R., J. Electroceram., 6(1) (2001), 61. http://dx.doi.org/10.1023/A:101142592096310.1023/A:1011425920963Search in Google Scholar

[4] Chen C., Wei Y., Jiao X., Chen D., Mater. Chem. Phys., 110 (2008), 186. http://dx.doi.org/10.1016/j.matchemphys.2008.01.03110.1016/j.matchemphys.2008.01.031Search in Google Scholar

[5] Ying K.-L., Hsieh T.-E., Mater. Sci. Eng. B-Adv., 138 (2007), 241. http://dx.doi.org/10.1016/j.mseb.2007.01.00210.1016/j.mseb.2007.01.002Search in Google Scholar

[6] Yuan Y., Zhang S.R., Zhou X.H., Tang B., J. Mater. Sci., 44 (2009), 3751. http://dx.doi.org/10.1007/s10853-009-3502-z10.1007/s10853-009-3502-zSearch in Google Scholar

[7] Liu L., Guo H., Lü H., Dai S., Cheng B., Chen Z., J. Appl. Phys., 97 (2005), 054102. http://dx.doi.org/10.1063/1.185805610.1063/1.1858056Search in Google Scholar

[8] Brzozowski E., Castro M.S., Foschini C.R., Stojanovic B., Ceram. Int., 28 (2002), 773. http://dx.doi.org/10.1016/S0272-8842(02)00042-110.1016/S0272-8842(02)00042-1Search in Google Scholar

[9] Shao Y., Maunders C., Rossouw D., Kolodiazhnyi T., Abotton G., Ultramicroscopy, 110 (2010), 1014. http://dx.doi.org/10.1016/j.ultramic.2010.05.00610.1016/j.ultramic.2010.05.006Search in Google Scholar

[10] Noh H.-J., Lee S.-G., Trans. Electr. Electron. Mater., 10(2) (2009), 49. http://dx.doi.org/10.4313/TEEM.2009.10.2.04910.4313/TEEM.2009.10.2.049Search in Google Scholar

[11] Hotta Y., Tsunekawa K., Isobe T., Sato K., Watari K., Mat. Sci. Eng. A-Struct., 475 (2008), 12. http://dx.doi.org/10.1016/j.msea.2006.11.16310.1016/j.msea.2006.11.163Search in Google Scholar

[12] Nowotny J., Rakas M., Ceram. Int., 20 (1994), 265. http://dx.doi.org/10.1016/0272-8842(94)90061-210.1016/0272-8842(94)90061-2Search in Google Scholar

[13] Brzozowski E., Castro M.S., J. Mater. Process. Tech., 168 (2005), 464. http://dx.doi.org/10.1016/j.jmatprotec.2005.02.24610.1016/j.jmatprotec.2005.02.246Search in Google Scholar

[14] Brzozowski E., Castro M.S., Foschini C.R., Stojanovic B., Ceram. Int., 28 (2002), 773. http://dx.doi.org/10.1016/S0272-8842(02)00042-110.1016/S0272-8842(02)00042-1Search in Google Scholar

[15] Newalkar B.L., Komarneni S., Katsuki H., Mater. Res. Bull., 36 (2001), 2347. http://dx.doi.org/10.1016/S0025-5408(01)00729-210.1016/S0025-5408(01)00729-2Search in Google Scholar

[16] Chen C., Wei Y., Jiao X., Chen D., Mater. Chem. Phys., 110 (2008), 186. http://dx.doi.org/10.1016/j.matchemphys.2008.01.03110.1016/j.matchemphys.2008.01.031Search in Google Scholar

[17] Szymczak L., Ujma Z., Adamczyk M., Pawełczyk M., Ceram. Int., 34 (2008), 1993. http://dx.doi.org/10.1016/j.ceramint.2007.07.02410.1016/j.ceramint.2007.07.024Search in Google Scholar

[18] Mote V.D., Purushotham Y., Dole B.N., J. Theor. Appl. Phys., 6 (2012), 6. http://dx.doi.org/10.1186/2251-7235-6-610.1186/2251-7235-6-6Search in Google Scholar

[19] Purushotham E., Krishna N.G., B. Mater. Sci., 36(6) (2013), 973. http://dx.doi.org/10.1007/s12034-013-0553-110.1007/s12034-013-0553-1Search in Google Scholar

[20] Herrmann M., Engel W., Giibel H., JCPDS, 45 (2002), 212. Search in Google Scholar

[21] Meier M., Measuring Crystallite Size Using X-ray Diffraction, The Williamson-Hall Technique (Draft), Department of Chemical Engineering and Materials Science, University of California, Davis, US 2005. Search in Google Scholar

[22] Ávila H.A., Ramajo L.A., Reboredo M.M., Castro M.S., Parra R., Ceram. Int., 37(7) (2011), 2383. http://dx.doi.org/10.1016/j.ceramint.2011.03.03210.1016/j.ceramint.2011.03.032Search in Google Scholar

[23] Min B., Moon S.-M., Cho N.-H., Curr. Appl. Phys., 11(3) (2011), S193. http://dx.doi.org/10.1016/j.cap.2011.01.03510.1016/j.cap.2011.01.035Search in Google Scholar

[24] Lazarević Z., Romčević N., Vijatović M., Paunović N., Romč Ević M., Stojanović B., Dohčević-Mitrović Z., Acta Phys. Pol. A, 115(4) (2009), 808. 10.12693/APhysPolA.115.808Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo