1. bookVolume 32 (2014): Issue 3 (September 2014)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Role of substrate temperature on the growth mechanism and physical properties of spray deposited lead oxide thin films

Published Online: 17 Oct 2014
Volume & Issue: Volume 32 (2014) - Issue 3 (September 2014)
Page range: 448 - 456
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Thin films of lead oxide were synthesized by cost effective spray pyrolysis technique at different substrate temperatures on glass substrates. Effect of substrate temperature on the growth mechanism and physical properties of the films was investigated. All the films were polycrystalline in nature with tetragonal structure corresponding to α-PbO. The films coated at 225 °C and 275 °C were (1 0 1) oriented, while the films deposited at 325 °C and 375 °C were (0 0 2) oriented. Above 375 °C, the pure tetragonal nature deteriorated and the peaks corresponding to orthorhombic phase were observed. The band gap value was found to be in the range of 2.3 to 2.62 eV. All the films had a resistivity of the order of 103 ohm-cm. A minimum resistivity of 0.0191 × 103 ohm-cm was obtained for the film coated at 325 °C. The activation energy increased with increase in substrate temperature.

Keywords

[1] Kotz R., Stucky S., Carcer B., J. Appl. Electrochem., 21 (1991), 14. http://dx.doi.org/10.1007/BF0110382310.1007/BF01103823Search in Google Scholar

[2] Lipp L., Pletcher D., Electrochim. Acta, 42 (1997), 1091. http://dx.doi.org/10.1016/S0013-4686(96)00257-510.1016/S0013-4686(96)00257-5Search in Google Scholar

[3] Comninellis C., Pulgarin C., J. Appl. Electrochem., 23 (1993), 108. http://dx.doi.org/10.1007/BF0024694610.1007/BF00246946Search in Google Scholar

[4] Veluchamy P., Sharon M., Shimizu M., Minoura H., J. Electroanal. Chem., 365 (1994), 179. http://dx.doi.org/10.1016/0022-0728(93)02973-L10.1016/0022-0728(93)02973-LSearch in Google Scholar

[5] Ghasemi S., Mousavi M.F., Shamsipur M., Karami H., Ultrason. Sonochem., 15 (2008), 448. http://dx.doi.org/10.1016/j.ultsonch.2007.05.00610.1016/j.ultsonch.2007.05.00617644461Search in Google Scholar

[6] Zhang L., Guo F., Liu X., Cui J., Qian Y.T., J. Cryst. Growth., 280 (2005), 575. http://dx.doi.org/10.1016/j.jcrysgro.2005.03.07310.1016/j.jcrysgro.2005.03.073Search in Google Scholar

[7] Chao S., Fuang Y.F., Chen Y.C., Yan L., J. Phys. D Appl. Phys., 23 (1990), 955. http://dx.doi.org/10.1088/0022-3727/23/7/03210.1088/0022-3727/23/7/032Search in Google Scholar

[8] Madsen L.D., Weaver L., J. Am. Ceram. Soc., 81 (1998), 988. http://dx.doi.org/10.1111/j.1151-2916.1998.tb02436.x10.1111/j.1151-2916.1998.tb02436.xSearch in Google Scholar

[9] Bersani M., Morten B., Prudenziati M., J. Mater. Res., 12 (1997), 501. http://dx.doi.org/10.1557/JMR.1997.007210.1557/JMR.1997.0072Search in Google Scholar

[10] Trinquier G., Hoffmann R., J. Phys. Chem., 88 (1984), 6696. http://dx.doi.org/10.1021/j150670a03810.1021/j150670a038Search in Google Scholar

[11] Samoilenkov S.V., Adamov G.E., Gorbenko O.Y., Graboy I.E., Kaul A.R., Zandbergen H.W., Physica C, 338 (2000), 189. http://dx.doi.org/10.1016/S0921-4534(00)00301-410.1016/S0921-4534(00)00301-4Search in Google Scholar

[12] Neumayer D.A., Schulz D.L., Richeson D.S., Marks T.J., Degrout D.C., Schindler J.L., Kannewurf C.R., Thin Solid Films, 216 (1992), 41. http://dx.doi.org/10.1016/0040-6090(92)90866-A10.1016/0040-6090(92)90866-ASearch in Google Scholar

[13] Thangaraju B., Kaliannan P., Semicond. Sci. Tech., 15 (2000), 542. http://dx.doi.org/10.1088/0268-1242/15/6/30910.1088/0268-1242/15/6/309Search in Google Scholar

[14] Martos M., Morales J., Sanchez L., Ayouchi R., Leinen D., Martin F., RAMOS Barrado J.R., Electrochim. Acta, 46 (2001), 2939. http://dx.doi.org/10.1016/S0013-4686(01)00512-610.1016/S0013-4686(01)00512-6Search in Google Scholar

[15] Greenwood N.N., Earnshaw A., Chemistry of the Elements, 2nd ed., Butterworth Heinemann, Oxford, 2001. Search in Google Scholar

[16] Kim J.H., Kim Y., Chien A.T., Lange F.F., J. Mater. Res., 16 (2001), 1739. http://dx.doi.org/10.1557/JMR.2001.024010.1557/JMR.2001.0240Search in Google Scholar

[17] Baleva M., Tuncheva V., J. Mater. Sci. Lett., 13 (1994), 3. http://dx.doi.org/10.1007/BF0235290210.1007/BF02352902Search in Google Scholar

[18] Venkataraj S., Geurts J., Weis H., Jayavel R., Wuttig M., J. Vac. Sci. Technol. A, 19 (2001), 2870. http://dx.doi.org/10.1116/1.141094810.1116/1.1410948Search in Google Scholar

[19] Zhitomirsky I., Gal-Or L., Kohn A., Hennicke H.W., J. Mater. Sci. Lett., 14 (1995), 807. http://dx.doi.org/10.1007/BF0027813610.1007/BF00278136Search in Google Scholar

[20] Patil P.S., Mater. Chem. Phys., 59 (1999), 185. http://dx.doi.org/10.1016/S0254-0584(99)00049-810.1016/S0254-0584(99)00049-8Search in Google Scholar

[21] Ayouchi A., Martin M., Leinen D., Ramosbarrado J.R., J. Cryst. Growth, 247 (2003), 497. http://dx.doi.org/10.1016/S0022-0248(02)01917-610.1016/S0022-0248(02)01917-6Search in Google Scholar

[22] Kamal H., Elmaghraby E.K., Aly S.A., Abdelhady K., J. Cryst. Growth, 262(14) (2004), 424. http://dx.doi.org/10.1016/j.jcrysgro.2003.10.09010.1016/j.jcrysgro.2003.10.090Search in Google Scholar

[23] Chitra Agashe, Takwale M.G., Marathe B.R., Bhide V.G., Sol. Energ. Mat. Sol. C., 17 (1988), 99. http://dx.doi.org/10.1016/0165-1633(88)90010-X10.1016/0165-1633(88)90010-XSearch in Google Scholar

[24] Deokate R.J., Pawar S.M., Moholkar A.V., Sawant V.S., Pawar C.A., Bhosale C.H., Rajpure K.Y., Appl. Surf. Sci., 254 (2008), 2187. http://dx.doi.org/10.1016/j.apsusc.2007.09.00610.1016/j.apsusc.2007.09.006Search in Google Scholar

[25] Cruz M., Hernan L., Morales J., Sanchez L., J. Power Sources, 108 (2002), 35. http://dx.doi.org/10.1016/S0378-7753(02)00006-X10.1016/S0378-7753(02)00006-XSearch in Google Scholar

[26] Ma Ying-ren, J. Appl. Phys., 76 (1994), 2860. http://dx.doi.org/10.1063/1.35752210.1063/1.357522Search in Google Scholar

[27] Mahmoud S.A., Alshomer S., Tarawnh M.A., J. Mod. Phys., 2 (2011), 1178. http://dx.doi.org/10.4236/jmp.2011.21014710.4236/jmp.2011.210147Search in Google Scholar

[28] Radhakrishnan S., Kamalasanam M.N., Mahendru P.C., J. Mater. Sci., 18 (1983), 1912. http://dx.doi.org/10.1007/BF0055498210.1007/BF00554982Search in Google Scholar

[29] Arai T., J. Phys. Soc. Jpn., 15 (1960), 916. http://dx.doi.org/10.1143/JPSJ.15.91610.1143/JPSJ.15.916Search in Google Scholar

[30] Venkatara S., Geurts J., Weis H., Kappertz O., Njoroge W.K., Jayavel R., J. Vac. Sci. Technol. A, 19 (2001), 2870. http://dx.doi.org/10.1116/1.141094810.1116/1.1410948Search in Google Scholar

[31] Ohhyeon Hwang, Sangsu Kim, Jong Heesuh, Shinttang Cho, Kittyun Kim, Jinki Hong, Sunung Kim, Nucl. Instrum. Meth. A, 633 (2011), 569. Search in Google Scholar

[32] Salunkhe R.R., Dhawale D.S., Gujar T.P., Lokhande C.D., Mater. Res. Bull., 44 (2009), 364. http://dx.doi.org/10.1016/j.materresbull.2008.05.01010.1016/j.materresbull.2008.05.010Search in Google Scholar

[33] Ratheesh Kumar P.M., Sudhakartha C., Vijayakumar K.P., Singh F., Avasthi D.K., Abi T., Kashiwabe Y., Okram G.S., Kumar M., Sarveesh Kumar., J. Appl. Phys., 97 (2005), 013509. http://dx.doi.org/10.1063/1.182357410.1063/1.1823574Search in Google Scholar

[34] Singh R., Arora S.K., Singh J.P., Renu Tyagi, Agarwal S.K., Kanjilal D., Mater. Sci. Eng. BAdv., 86 (2001), 228. http://dx.doi.org/10.1016/S0921-5107(01)00707-310.1016/S0921-5107(01)00707-3Search in Google Scholar

[35] Khadeer Pasha S.K., Chidambaram K., Vijayan N., Madhuri W., Optoelectron. Adv. Mat., 6(1–2) (2012), 110. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo