1. bookVolume 32 (2014): Issue 3 (September 2014)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Synthesis, characterization, DC-electrical conductivity and γ-ray effect on Ag1+, Y3+ double doped nano lithium manganates (LiMn2−2x AgxYxO4) for rechargeable batteries

Published Online: 17 Oct 2014
Volume & Issue: Volume 32 (2014) - Issue 3 (September 2014)
Page range: 315 - 323
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Pristine lithium manganate (LiMn2O4) and Ag1+, Y3+ double doped nano lithium manganate [LiMn2−2x AgxYxO4, (x = 0.025, 0.05)] spinels were synthesized via a coprecipitation method for rechargeable batteries applications. The synthesized LiMn1.9Ag0.05Y0.05O4 was exposed to different doses of γ-irradiation (10 and 30 kGy). The resulting spinel products were characterized by using thermogravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM), energy dispersive analysis of X-rays (EDAX), electronic (UV-Vis) and electron spin resonance (ESR) spectra. LiMn2O4 exhibited a discharge capacity of 124 mAhg−1 while LiMn1.9Ag0.05Y0.05O4 had discharge capacities of 129 and 137 mAhg−1 for non irradiated and γ-irradiated (30 kGy) samples, respectively. The effects of the dopant cations and γ-irradiation on the discharge capacity and DC-electrical conductivity of some synthesized spinels were studied.

Keywords

[1] Tarascon J.M., Armand M., Nature, 414 (2001), 359. http://dx.doi.org/10.1038/3510464410.1038/35104644Search in Google Scholar

[2] Goua D., Changa Z., Tanga H., Lia B., Xua X., Yuanb X., Wangb H., Electrochim. Acta, 123 (2014), 254. http://dx.doi.org/10.1016/j.electacta.2014.01.03010.1016/j.electacta.2014.01.030Search in Google Scholar

[3] Tarascon J.M., Mckinnon W.R., Coowar F., Bowner T.N., Amatucci G., Guyomard D.J., J. Electrochem. Soc., 141 (1994), 1431. 10.1149/1.2054941Search in Google Scholar

[4] Gummow R.J., Kock De A., Thackeray M.M., Solid State Ionics, 69 (1994), 67. http://dx.doi.org/10.1016/0167-2738(94)90450-210.1016/0167-2738(94)90450-2Search in Google Scholar

[5] Thackeray M.M., Kock De A., Rossouw M.H., Liles D., Bittihn R., Hoge D., J. Electrochem. Soc., 139 (1992), 366. http://dx.doi.org/10.1149/1.206922310.1149/1.2069223Search in Google Scholar

[6] Xia Y., Yoshio M., J. Electrochem. Soc., 144 (1997), 2600. 10.1149/1.1837870Search in Google Scholar

[7] Pistoia G., Antonini A., Rosati R., Zane D., Electrochim. Acta, 41 (1996), 2689. http://dx.doi.org/10.1016/0013-4686(96)00122-310.1016/0013-4686(96)00122-3Search in Google Scholar

[8] Jang D.H., Shin J., Oh S.M., J. Electrochem. Soc., 143 (1996), 2211. http://dx.doi.org/10.1149/1.183698210.1149/1.1836982Search in Google Scholar

[9] Yamada A., J. Solid State Chem., 122 (1996), 165. http://dx.doi.org/10.1006/jssc.1996.009710.1006/jssc.1996.0097Search in Google Scholar

[10] Ohuzuku T., Takeda S., Iwanaga M., J. Power Sources, 90 (1999), 82. Search in Google Scholar

[11] Song D., Ikuta H., Uchida T., Wakihara M., Solid State Ionics, 117 (1999), 156. http://dx.doi.org/10.1016/S0167-2738(98)00258-610.1016/S0167-2738(98)00258-6Search in Google Scholar

[12] Khedr A.M., Abou-Sekkina M.M., El-Metwaly F.G., J. Electron. Mater., 42 (2013), 1275. http://dx.doi.org/10.1007/s11664-013-2588-x10.1007/s11664-013-2588-xSearch in Google Scholar

[13] Javediqbal M., Zahoor S., J. Power Sources, 165 (2007), 397. 10.1016/j.jpowsour.2006.11.068Search in Google Scholar

[14] Abou-Sekkina M.M., Khedr A.M., El-Metwaly F.G., Chem. Mater. Res., 3 (2013), 15. Search in Google Scholar

[15] Kumar G., Schlorb H. And Rahner D., Mater. Chem. Phys., 70 (2001), 123. http://dx.doi.org/10.1016/S0254-0584(00)00479-X10.1016/S0254-0584(00)00479-XSearch in Google Scholar

[16] Saad F.A., Abou-Sekkina M.M., Khedr A.M., El-Metwaly F.G., Int. J. Electrochem. Sc., 9 (2014), 3904. Search in Google Scholar

[17] Lee J.H., Hong J.K., Jang D.H., Sun Y.K., Oh S.M., J. Power Sources, 89 (2000), 714. Search in Google Scholar

[18] Tu J., Zhao X.B., Cao G.S., Tu J.P., Zhu T.J., Mater. Lett., 59 (2005), 2886. http://dx.doi.org/10.1016/j.matlet.2005.04.03510.1016/j.matlet.2005.04.035Search in Google Scholar

[19] Rougier C.J., Nazri G.A., Julien C., Mater. Res. Soc. Symp. Proc., 453 (1997), 647. Search in Google Scholar

[20] Rougier C.J., Nazri G.A., Julien C., Ionics, 3 (1997), 170. http://dx.doi.org/10.1007/BF0237561310.1007/BF02375613Search in Google Scholar

[21] Richardson T.J., Ross P.N., Mater. Res. Bull., 31 (1996), 935. http://dx.doi.org/10.1016/S0025-5408(96)00079-710.1016/S0025-5408(96)00079-7Search in Google Scholar

[22] Chitra S., Kalyani P., Mohan T., Massot M., Ziolkiewicz S., Gangadharan R., Eddrief M., Julien C., Ionics, 4 (1998), 1. http://dx.doi.org/10.1007/BF0237577410.1007/BF02375774Search in Google Scholar

[23] Helan M., Berchman L., Jose T., Visuvasam A., Angappan S., Mater. Chem. Phys., 124 (2010), 439. http://dx.doi.org/10.1016/j.matchemphys.2010.06.06310.1016/j.matchemphys.2010.06.063Search in Google Scholar

[24] Xiong L., Xu Y., Tao T., Goodenough J.B., J. Power Sources, 199 (2012), 214. http://dx.doi.org/10.1016/j.jpowsour.2011.09.06210.1016/j.jpowsour.2011.09.062Search in Google Scholar

[25] Thirunakaran R., Sivashanmugam A., Gopukumar S., Rajalakshmi R., J. Power Sources, 187 (2009), 565. http://dx.doi.org/10.1016/j.jpowsour.2008.10.13410.1016/j.jpowsour.2008.10.134Search in Google Scholar

[26] Thirunakaran R., Ravikumar R., Gopukumar S., Sivashanmugam A., J. Alloy Comp., 556 (2013), 266. http://dx.doi.org/10.1016/j.jallcom.2012.12.05310.1016/j.jallcom.2012.12.053Search in Google Scholar

[27] Goodenough J.B., Kim Y., Chem. Mater., 22 (2010), 587. http://dx.doi.org/10.1021/cm901452z10.1021/cm901452zSearch in Google Scholar

[28] Liu D., Han J., Dontigny M., Charest P., Guerfi A., Zaghib K., Goodenough J.B., J. Electrochem. Soc., 157 (2010), 770. http://dx.doi.org/10.1149/1.339236810.1149/1.3392368Search in Google Scholar

[29] Goodenough J.B., Oxides cathodes. In Advances in Lithium-Ion Batteries, Kluwer Academic/Plenum, New York, 2002. 10.1007/0-306-47508-1_5Search in Google Scholar

[30] Manthiram A., Chemical and Structural Stabilities of Layered Oxide Cathodes. In New Trends in Intercalation Compounds for Energy Storage, NATO Science Series, Kluwer Academic Publishers, Dordrecht, 2002. 10.1007/978-94-010-0389-6_12Search in Google Scholar

[31] Julien C.M., Mauger A., Zaghib K., Groult H., Inorganics, 2 (2014), 132. http://dx.doi.org/10.3390/inorganics201013210.3390/inorganics2010132Search in Google Scholar

[32] Liu D., Hamel-Paquet J., Trottier J., Barray F., Gariepy V., Hovington P., Guerfi A., Mauger A., Julien C.M., Goodenough J.B., J. Power Sources, 217 (2012), 400. http://dx.doi.org/10.1016/j.jpowsour.2012.06.06310.1016/j.jpowsour.2012.06.063Search in Google Scholar

[33] Raman R., Murthy V.R.K., Viswanathan B., J. Appl. Phys., 69 (1991), 4053. http://dx.doi.org/10.1063/1.34841510.1063/1.348415Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo