1. bookVolume 32 (2014): Issue 2 (June 2014)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Influence of different materials on the microstructure and optical band gap of α-Fe2O3 nanoparticles

Published Online: 22 Jul 2014
Volume & Issue: Volume 32 (2014) - Issue 2 (June 2014)
Page range: 193 - 197
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Composites of hematite (α-Fe2O3) nanoparticles with different materials (NiO, TiO2, MnO2 and Bi2O3) were synthesized. Effects of different materials on the microstructure and optical band gap of α-Fe2O3 nanoparticles were studied. Crystallite size and strain analysis indicated that the pure α-Fe2O3 nanoparticles were influenced by the presence of different materials in the composite sample. Crystallite size and strain estimated for all the samples followed opposite trends. However, the value of direct band gap decreased from ∼2.67 eV for the pure α-Fe2O3 nanoparticles to ∼2.5 eV for α-Fe2O3 composites with different materials. The value of indirect band gap, on the other hand, increased for all composite samples except for α-Fe2O3/Bi2O3.

Keywords

[1] Bentivegna F., Ferre J., Nyvlt M., Jamet J.P., Imhoff D., Canva M., Brun A., Veillet P., Visnovsky S., Chaput F., Boilot J.P., J. Appl. Phys., 83 (1998), 7776. http://dx.doi.org/10.1063/1.36795210.1063/1.367952Search in Google Scholar

[2] Vayssieres L., Beermann N., Lindquist S.-E., Hagfeldt A., Chem. Mater., 13 (2001), 233. http://dx.doi.org/10.1021/cm001202x10.1021/cm001202xSearch in Google Scholar

[3] Hassan M.F., Rahman M.M., Guo Z.P., Chen Z.X., Liu H.K., Electrochim. Acta, 55 (2010), 5006. http://dx.doi.org/10.1016/j.electacta.2010.04.00610.1016/j.electacta.2010.04.006Search in Google Scholar

[4] Cheng F., Huang K., Liu S., Liu J., Deng R., Electrochim. Acta, 56 (2011), 5593. http://dx.doi.org/10.1016/j.electacta.2011.04.00210.1016/j.electacta.2011.04.002Search in Google Scholar

[5] Sarkar D., Khan G.G., Singh A.K., Mandal K., J. Phys. Chem. C, 117(30) (2013), 15523. http://dx.doi.org/10.1021/jp403957310.1021/jp4039573Search in Google Scholar

[6] Tang H., Zhang D., Tang G., Ji X., Li W., Li C., Yang X., Ceram. Int., 39(8) (2013), 8633. http://dx.doi.org/10.1016/j.ceramint.2013.04.04010.1016/j.ceramint.2013.04.040Search in Google Scholar

[7] Pradhan G.K., Padhi D.K., Parida K.M., ACS Appl. Mater. Interfaces, 5(18) (2013), 9101. http://dx.doi.org/10.1021/am402487h10.1021/am402487h23962068Search in Google Scholar

[8] Li H., Zhao Q., Li X., Zhu Z., Tade M., Liu S., J. Nanopart. Res., 15 (2013), 1670. http://dx.doi.org/10.1007/s11051-013-1670-x10.1007/s11051-013-1670-xSearch in Google Scholar

[9] Mcdonald K.J., Choi K.-S., Chem. Mater., 23(21) (2011), 4863. http://dx.doi.org/10.1021/cm202399g10.1021/cm202399gSearch in Google Scholar

[10] Zhu X., Zhu Y., Murali S., Stoller M.D., Ruoff R.S, ACS Nano, 5(4) (2011), 3333. http://dx.doi.org/10.1021/nn200493r10.1021/nn200493r21443243Search in Google Scholar

[11] Zhang H., Xie A., Wang C., Wang H., Shen Y., Tian X., J. Mater. Chem. A, 1 (2013), 8547. http://dx.doi.org/10.1039/c3ta11278k10.1039/c3ta11278kSearch in Google Scholar

[12] Xiao W., Wang Z., Guo H., Li X., Wang J., Huang S., Gan L., Appl. Surf. Sci., 266 (2013), 148. http://dx.doi.org/10.1016/j.apsusc.2012.11.11810.1016/j.apsusc.2012.11.118Search in Google Scholar

[13] Cheng F., Huang K., Liu S., Liu J., Deng R., Electrochim. Acta, 56 (2011), 5593. http://dx.doi.org/10.1016/j.electacta.2011.04.00210.1016/j.electacta.2011.04.002Search in Google Scholar

[14] Mallick P., Dash B.N., J. Nanosci. Nanotechnol., 3 (2013), 130. Search in Google Scholar

[15] Mallick P., Sahoo C.S., J. Nanosci. Nanotechnol., 3 (2013), 52. Search in Google Scholar

[16] Fouda M.F.R., Elkholy M.B., Mostafa S.A., Hussien A.I., Wahba M.A., El-shahat M.F., Adv. Mat. Lett., 4(5) (2013), 347. 10.5185/amlett.2012.9421Search in Google Scholar

[17] Zhong M., Liuy Z., Zhong X., Yu H., Zeng D., J. Mater. Sci. Technol., 27(11) (2011), 985. http://dx.doi.org/10.1016/S1005-0302(11)60174-610.1016/S1005-0302(11)60174-6Search in Google Scholar

[18] Gordillo G., Florez J.M., Hernandez L.C., Sol. Energ. Mat. Sol. C., 37 (1995), 273. http://dx.doi.org/10.1016/0927-0248(95)00020-810.1016/0927-0248(95)00020-8Search in Google Scholar

[19] Cheng K., He Y.P., Miao Y.M., Zou B.S., Wang Y.G., Wang T.H., Zhang X.T., Du Z.L., J. Phys. Chem. B, 110 (2006), 7259. http://dx.doi.org/10.1021/jp057593q10.1021/jp057593q16599495Search in Google Scholar

[20] Mott N.F., Davis E.A., Electronic Processes in Non-Crystalline Materials, Clarendon-Press, Oxford, 1971. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo